scholarly journals Beyond Host Defense: Emerging Functions of the Immune System in Regulating Complex Tissue Physiology

Cell ◽  
2018 ◽  
Vol 173 (3) ◽  
pp. 554-567 ◽  
Author(s):  
Lucille C. Rankin ◽  
David Artis
Keyword(s):  
2022 ◽  
pp. 37-74
Author(s):  
Weilan Wang ◽  
◽  
Tingting Ju ◽  
Michael G. Gänzle ◽  
◽  
...  

Vertebrate animals are holobionts and their physiology and metabolism are influenced by their commensal microbiota. Gut microbiota and their metabolites play a key role in the host defense against pathogenic microorganisms, shape the immune system, and impact the resistance to chronic disease. The metabolic activity of intestinal microbiota contributes significantly to the conversion of diet components to molecules that can be absorbed and metabolized by the host. The metabolic capacity of the intestinal microbiota by far exceeds the metabolic capacity of the hosts. Collectively, gut microbes support the digestion of the major nutrients, i.e. carbohydrates, proteins and lipids, and impact uptake and conversion of micronutrients, e.g. phenolic compounds and minerals. This chapter provides an overview on the metabolism of carbohydrates and bile salts by pig microbiota.


2006 ◽  
Vol 3 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Aristo Vojdani ◽  
Jonathan Erde

Over the past decade, great interest has been given to regulatory T (Treg) cells. A vast body of evidence has shown the existence and highlighted the importance of Treg cells in the active suppression of immune system responses. This form of immunoregulation is the dominant means utilized by the immune system to reach a harmony between reciprocal response processes in order to ensure adequate host defense with minimal host detriment. Therapeutically targeting Treg cells is a direct and powerful means to manipulate the immune system to achieve beneficial effects on various disease pathologies, including allergy, autoimmunity and cancer, as well as the facilitation of organ transplantation. This powerful target for immunoregulation is of much concern to practitioners and researchers of complementary and alternative medicine because it allows a great deal of control and certainty in dealing with the prevalence of debilitating immune system-related disorders for which there has been little remedy outside of Western Medicine.


2007 ◽  
Vol 20 (3) ◽  
pp. 421-434 ◽  
Author(s):  
M. Mayerhofer ◽  
K.J. Aichberger ◽  
S. Florian ◽  
P. Valent

Traditionally, mast cells (MCs) have been considered to play an important role in allergic disorders and helminth infections. More recently, MCs have been implicated in a variety of different infectious diseases including life-threatening disorders caused by viruses and bacteria. Apart from recognition through specific IgE, MCs are considered to recognize such bacteria and viruses via specific cell surface binding sites. In addition, MCs interact with diverse components and cells of the immune system and thereby may facilitate the targeting and the elimination of invading microbes in the tissues. The current article provides an overview on MC antigens contributing to microbe recognition and targeting as an important element of natural host-defense.


2020 ◽  
Vol 10 (5) ◽  
pp. 1521-1539 ◽  
Author(s):  
Daniel R. McHugh ◽  
Elena Koumis ◽  
Paul Jacob ◽  
Jennifer Goldfarb ◽  
Michelle Schlaubitz-Garcia ◽  
...  

Aging is accompanied by a progressive decline in immune function termed “immunosenescence”. Deficient surveillance coupled with the impaired function of immune cells compromises host defense in older animals. The dynamic activity of regulatory modules that control immunity appears to underlie age-dependent modifications to the immune system. In the roundworm Caenorhabditis elegans levels of PMK-1 p38 MAP kinase diminish over time, reducing the expression of immune effectors that clear bacterial pathogens. Along with the PMK-1 pathway, innate immunity in C. elegans is regulated by the insulin signaling pathway. Here we asked whether DAF-16, a Forkhead box (FOXO) transcription factor whose activity is inhibited by insulin signaling, plays a role in host defense later in life. While in younger C. elegansDAF-16 is inactive unless stimulated by environmental insults, we found that even in the absence of acute stress the transcriptional activity of DAF-16 increases in an age-dependent manner. Beginning in the reproductive phase of adulthood, DAF-16 upregulates a subset of its transcriptional targets, including genes required to kill ingested microbes. Accordingly, DAF-16 has little to no role in larval immunity, but functions specifically during adulthood to confer resistance to bacterial pathogens. We found that DAF-16-mediated immunity in adults requires SMK-1, a regulatory subunit of the PP4 protein phosphatase complex. Our data suggest that as the function of one branch of the innate immune system of C. elegans (PMK-1) declines over time, DAF-16-mediated immunity ramps up to become the predominant means of protecting adults from infection, thus reconfiguring immunity later in life.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 306
Author(s):  
Alejandra V. Contreras ◽  
David L. Wiest

γδ T cells are a subset of T cells with attributes of both the innate and adaptive arms of the immune system. These cells have long been an enigmatic and poorly understood component of the immune system and many have viewed them as having limited importance in host defense. This perspective persisted for some time both because of critical gaps in knowledge regarding how the development of γδ T cells is regulated and because of the lack of effective and sophisticated approaches through which the function of γδ T cells can be manipulated. Here, we discuss the recent advances in both of these areas, which have brought the importance of γδ T cells in both productive and pathologic immune function more sharply into focus.


Author(s):  
Atsushi Shirai ◽  
Toshiyuki Hayase

Neutrophils are known as the most popular cells in leukocytes, and play important roles in immune system. They are retained in pulmonary capillary network even in normal lungs, causing higher concentration than in systemic circulation due to their low deformability [1]. The lungs can be a route for pathogenic substances to invade the host, since thickness of septa which separates blood and outer air is extremely thin. However, the highly concentrated neutrophils are thought to be effectively recruited to the sites of inflammation for the host defense. Therefore, it is essential to know how neutrophils flow in pulmonary capillary microvasculature for the understanding of their functions and behavior in immune system.


2020 ◽  
Vol 2020 ◽  
pp. 1-27 ◽  
Author(s):  
Patricio L. Acosta ◽  
Alana B. Byrne ◽  
Diego R. Hijano ◽  
Laura B. Talarico

Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.


2004 ◽  
Vol 75 (5) ◽  
pp. 749-755 ◽  
Author(s):  
Mihai G. Netea ◽  
Chantal Van der Graaf ◽  
Jos W. M. Van der Meer ◽  
Bart Jan Kullberg

2021 ◽  
Vol 22 (11) ◽  
pp. 5620
Author(s):  
Sharmila Govindaraj ◽  
Lakshmi Bhargavi Paruchuru ◽  
Ehud Razin

The innate and adaptive immune systems play an essential role in host defense against pathogens. Various signal transduction pathways monitor and balance the immune system since an imbalance may promote pathological states such as allergy, inflammation, and cancer. Mast cells have a central role in the regulation of the innate/adaptive immune system and are involved in the pathogenesis of many inflammatory and allergic diseases by releasing inflammatory mediators such as histamines, proteases, chemotactic factors, and cytokines. Although various signaling pathways are associated with mast cell activation, our discovery and characterization of the pLysRS-Ap4A signaling pathway in these cells provided an additional important step towards a full understanding of the intracellular mechanisms involved in mast cell activation. In the present review, we will discuss in depth this signaling pathway’s contribution to host defense and the pathological state.


Sign in / Sign up

Export Citation Format

Share Document