A delamination failure criterion considering the effects of through-thickness compression on the interlaminar shear failure of composite laminates

2020 ◽  
Vol 241 ◽  
pp. 112121 ◽  
Author(s):  
Xiangming Chen ◽  
Xiasheng Sun ◽  
Puhui Chen ◽  
Yanan Chai
2013 ◽  
Vol 718-720 ◽  
pp. 157-161
Author(s):  
Zong Hong Xie ◽  
Hai Han Liu ◽  
Jian Zhao ◽  
Jun Feng Sun ◽  
Fei Peng ◽  
...  

A modified test fixture to measure the shear properties of composite laminates was designed and manufactured based upon Iosipescu shear test method. Tests on interlaminar shear propertis of T300/BMI composite laminates were conducted according to ASTM D 5379 test standard. Interlaminar shear stress/strain curves and shear failure modes were obtained. The test results showed that the modified shear test fixture and test method were effective in measuring the shear properties of composite laminates.


2020 ◽  
Vol 32 (7) ◽  
pp. 835-841 ◽  
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

Interlaminar properties are one of the most important indicators of thermoplastic composite quality. A series of laminates with different moulding process parameters were prepared by unidirectional carbon fibre-reinforced polyether ether ketone (CF/PEEK) prepreg to explore the influence of moulding process parameters on the interlaminar properties of CF/PEEK composite laminates. The influence of the three process parameters, moulding pressure, moulding temperature, and holding time on the interlaminar shear strength (ILSS) of [0/90]8 laminates was studied. The interlaminar shear failure modes of specimens under different moulding process parameters were compared, and the correlation between the ILSS and interlaminar shear failure modes was analysed. The results showed that the appropriate moulding pressure was 2 MPa, the proper moulding temperature range was 400–420°C and the holding time should not be less than 20 min. The main failure modes were tensile or compression when the laminates were moulded using proper process parameters; interlaminar shear failure might also appear in those moulded by non-optimised process parameters.


1982 ◽  
Vol 55 (4) ◽  
pp. 1078-1094 ◽  
Author(s):  
J. L. Turner ◽  
J. L. Ford

Abstract Cord-rubber composite systems allow a visualization of interply shear strain effects because of the compliant nature of the matrix material. A technique termed the pin test was developed to aid this visualization of interply shear strain. The pin test performed on both flat pads and radial tires shows that interlaminar shear strain behavior in both types of specimens is similar, most of the shear strain being confined to a region approximately 10 interly rubber thicknesses from the edge. The observed shear strain is approximately an order of magnitude greater than the applied extensional strain. A simplified mathematical model, called the Kelsey strip, for describing such behavior for a two-ply (±θ) cord-rubber strip has been formulated and demonstrated to be qualitatively correct. Furthermore, this model is capable of predicting trends in both compliant and rigid matrix composites and allows for simplified idealizations. A finite-element code for dealing with such interply effects in a simple but efficient manner predicts qualitatively correct results.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Srinivas Shenoy Heckadka ◽  
Suhas Yeshwant Nayak ◽  
Karan Narang ◽  
Kirti Vardhan Pant

Polymer matrix composites are one of the materials being extensively researched and are gaining a lot of importance due to advantages like high specific strength, greater flexibility in design, and reduced cost of manufacturing. In this study, tensile, flexural, impact, and interlaminar shear strength of chopped strand/plain weave E-glass composites were considered. Composite laminates with different stacking sequence were fabricated using Vacuum Assisted Resin Infusion Moulding (VARIM) technique. Fiber volume fractions (FVF) of 22%, 26%, and 30% were adopted. Experiments were conducted in accordance with ASTM standards. Results indicate that laminates with three layers of plain weave mat exhibited better tensile, flexural, and interlaminar shear strength. However, laminates with two layers of chopped strand mat and one layer of plain weave mat showed improved impact resistance. In addition, scanning electron microscopy was used to analyze the fracture surface.


2017 ◽  
Vol 31 (9) ◽  
pp. 1181-1203 ◽  
Author(s):  
Xueyao Hu ◽  
Hui Guo ◽  
Weiguo Guo ◽  
Feng Xu ◽  
Longyang Chen ◽  
...  

Theoretical and experimental studies on the compressive mechanical behavior of 4-harness satin weave carbon/epoxy composite laminates under in-plane loading are conducted over the temperature range of 298–473 K and the strain rate range of 0.001–1700/s in this article. The stress–strain curves of 4-harness satin weave composites are obtained at different strain rates and temperatures, and key mechanical properties of the material are determined. The deformation mechanism and failure morphology of the samples are observed and analyzed by scanning electron microscope (SEM) micrographs. The results show that the uniaxial compressive mechanical properties of 4-harness satin weave composites are strongly dependent on the temperature but are weakly sensitive to strain rate. The peak stress and elastic modulus of the material have the trend of decrease with the increasing of temperature, and the decreasing trend can be expressed as the functional relationship of temperature shift factor. In addition, SEM observations show that the quasi-static failure mode of 4-harness satin weave composites is shear failure along the diagonal lines of the specimens, while the dynamic failure modes of the material are multiple delaminations and longitudinal splitting, and with the increasing of temperature, its longitudinal splitting is more serious, but the delamination is relatively reduced. A constitutive model with thermomechanical coupling effects is proposed based on the experimental results and the increment theory of elastic–plastic mechanics. The experimental verification and numerical analysis show that the model is shown to be able to predict the finite deformation behavior of 4-harness satin weave composites over a wide range of temperatures.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Song Leng ◽  
Li Hou ◽  
Yang Duan

An explicit analytical workflow for cylindrical hole stability analyses in general laminated materials that possess transversely isotropic (TI) anisotropy is presented. In this approach, the calculation of the distribution of the stresses around a cylindrical hole and the failure evaluation at the hole wall consider the effects of both material elasticity anisotropy and strength anisotropy caused by material laminated structures. Material strength anisotropy is assumed to be caused by the sliding of preexisting weakness planes oriented parallel to the isotropic plane of the material. The effect of anisotropy on strength is modeled by combining a shear failure criterion for the intact matrix and a weak plane failure criterion for the planes of weakness. We derive critical pressure solutions for the stability of the intact matrix around a hole filled with gas or fluid based on the Mohr–Coulomb failure criterion and Drucker–Prager failure criterion; either one of them can be combined with the weak plane failure criterion to give the solution for hole wall shear failure pressure. The solution for hole wall fracture initiation pressure is derived based on the tensile failure criterion. This approach can be applied to holes of arbitrary orientation in general laminated materials.


Sign in / Sign up

Export Citation Format

Share Document