The effect of moulding process parameters on interlaminar properties of CF/PEEK composite laminates

2020 ◽  
Vol 32 (7) ◽  
pp. 835-841 ◽  
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

Interlaminar properties are one of the most important indicators of thermoplastic composite quality. A series of laminates with different moulding process parameters were prepared by unidirectional carbon fibre-reinforced polyether ether ketone (CF/PEEK) prepreg to explore the influence of moulding process parameters on the interlaminar properties of CF/PEEK composite laminates. The influence of the three process parameters, moulding pressure, moulding temperature, and holding time on the interlaminar shear strength (ILSS) of [0/90]8 laminates was studied. The interlaminar shear failure modes of specimens under different moulding process parameters were compared, and the correlation between the ILSS and interlaminar shear failure modes was analysed. The results showed that the appropriate moulding pressure was 2 MPa, the proper moulding temperature range was 400–420°C and the holding time should not be less than 20 min. The main failure modes were tensile or compression when the laminates were moulded using proper process parameters; interlaminar shear failure might also appear in those moulded by non-optimised process parameters.

2013 ◽  
Vol 718-720 ◽  
pp. 157-161
Author(s):  
Zong Hong Xie ◽  
Hai Han Liu ◽  
Jian Zhao ◽  
Jun Feng Sun ◽  
Fei Peng ◽  
...  

A modified test fixture to measure the shear properties of composite laminates was designed and manufactured based upon Iosipescu shear test method. Tests on interlaminar shear propertis of T300/BMI composite laminates were conducted according to ASTM D 5379 test standard. Interlaminar shear stress/strain curves and shear failure modes were obtained. The test results showed that the modified shear test fixture and test method were effective in measuring the shear properties of composite laminates.


2017 ◽  
Vol 31 (9) ◽  
pp. 1181-1203 ◽  
Author(s):  
Xueyao Hu ◽  
Hui Guo ◽  
Weiguo Guo ◽  
Feng Xu ◽  
Longyang Chen ◽  
...  

Theoretical and experimental studies on the compressive mechanical behavior of 4-harness satin weave carbon/epoxy composite laminates under in-plane loading are conducted over the temperature range of 298–473 K and the strain rate range of 0.001–1700/s in this article. The stress–strain curves of 4-harness satin weave composites are obtained at different strain rates and temperatures, and key mechanical properties of the material are determined. The deformation mechanism and failure morphology of the samples are observed and analyzed by scanning electron microscope (SEM) micrographs. The results show that the uniaxial compressive mechanical properties of 4-harness satin weave composites are strongly dependent on the temperature but are weakly sensitive to strain rate. The peak stress and elastic modulus of the material have the trend of decrease with the increasing of temperature, and the decreasing trend can be expressed as the functional relationship of temperature shift factor. In addition, SEM observations show that the quasi-static failure mode of 4-harness satin weave composites is shear failure along the diagonal lines of the specimens, while the dynamic failure modes of the material are multiple delaminations and longitudinal splitting, and with the increasing of temperature, its longitudinal splitting is more serious, but the delamination is relatively reduced. A constitutive model with thermomechanical coupling effects is proposed based on the experimental results and the increment theory of elastic–plastic mechanics. The experimental verification and numerical analysis show that the model is shown to be able to predict the finite deformation behavior of 4-harness satin weave composites over a wide range of temperatures.


2020 ◽  
pp. 152808372096074
Author(s):  
Mohamed A Attia ◽  
Marwa A Abd El-baky ◽  
Mostafa M Abdelhaleem ◽  
Mohamed A Hassan

An experimental investigation on the mechanical performance of interlayer hybrid flax-basalt-glass woven fabrics reinforced epoxy composite laminates has been performed. The tensile, flexural, in-plane shear, interlaminar shear, bearing, and impact properties of the fabricated laminates were investigated. Test specimens were fabricated using vacuum bagging process. Failure modes of all specimens were recorded and discussed. Results proved that the mechanical properties of flax-basalt-glass hybrid laminates are highly dominated by the reinforcement combinations and plies stacking sequence. Hybridizing flax fiber reinforced composite with basalt and/or glass fabrics provides an effective method for enhancing its tensile, flexural, in-plane shear, interlaminar shear, and bearing properties as well as controls the impact strength of the composite. The fabricated hybrids are found to have good specific mechanical properties benefits. Amongst the studied flax/basalt/glass hybrids, FBGs has the highest tensile properties, GBFs has the highest flexural and impact properties, and GFBs has the best shear and bearing properties. Flax-basalt-glass hybrid composites with different layering sequence seem to be an appropriate choice for lightweight load bearing structures.


2019 ◽  
Vol 32 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Chenglong Guan ◽  
Lihua Zhan ◽  
Guiming Liu ◽  
Xiaobo Yang ◽  
Guangming Dai ◽  
...  

Compared with the conventional composite curing processes, high-pressure microwave curing is a promising technology. In this study, a set of devices for high-pressure microwave curing was built and equipped with real-time temperature measurement capability and a microwave input control system. The orthogonal experimental method was applied to optimize three process parameters, including the heating rate, curing temperature, and holding time, for the high-pressure microwave curing of T800/X850 composites. The effects of the three parameters on the curing quality were studied by measuring the interlaminar shear strength (ILSS) and conducting differential scanning calorimeter tests. The fracture surface of the samples was also examined by scanning electron microscopy. The results showed that the heating rate had a significant effect on the ILSS of the laminates, and the degree of cure of all samples was more than 95% in the tests. Furthermore, the optimal process parameters were determined as follows: heat up to 170°C with a heating rate of 6°C min−1 and a holding time of 90 min. The total curing time of the sample was 42.4%, and the ILSS of the sample was slightly enhanced by 0.31% compared with standard thermal curing. These results could serve to make trade-offs between reducing manufacturing time and preserving the mechanical properties of microwave-cured composites.


2021 ◽  
Vol 30 ◽  
pp. 263498332110018
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

In this article, nine groups of laminates were prepared according to the Taguchi L9(33) test array to study the influence of three process parameters, including molding pressure, molding temperature, and holding time on the performance of unidirectional carbon fiber/polyetheretherketone (CF/PEEK) laminates. A differential scanning calorimetry test was employed to select a reasonable process parameters range. The transverse tensile strength of the laminates was measured, and the fiber–matrix interfacial bonding behavior of the tested samples was analyzed by scanning electron microscopy. The results showed that the significance of factors to transverse tensile strength were molding temperature, holding time, and molding pressure in sequence. The optimal molding process parameters for CF/PEEK composite laminate were molding temperature of 400°C, molding pressure of 3 MPa, and holding time of 30 min. The optimization results were meaningful for the extension and application of thermoplastic composites.


2021 ◽  
Vol 309 ◽  
pp. 01094
Author(s):  
Abayomi Abayomi Akinwande ◽  
Adeolu Adesoji Adediran ◽  
Oluwatosin Abiodun Balogun ◽  
Bayode Julius Olorunfemi ◽  
M. Saravana Kumar

Recycling and reuse of plastic waste by blending with virgin polymer has been affirmed to be the best way of managing the waste. Equally, agro-waste are best recycled than being burnt off. In the development of stronger and cheaper ecoefficient recycled PET composite for food packaging, this study focused on reinforcement of the blend of 20 wt. % recycled PET (rPET) and 80 wt. % virgin PET (vPET) with snail shell particulate and kenaf fiber via compression moulding process. The process parameters are fiber dosage, particulate dosage, moulding pressure and temperature. Box-Behnken design was engaged in the design of experiment and the samples were produced according to the experimental runs. Result of analysis of variance pinpointed the process factors as significant contributors to the flexural strength response. The model developed was validated to be significant and statistically fit. Interactions between the process variables as revealed by the response surface plots indicated the response was dependent on the interactive pattern between the variables. Response surface optimization showed an optimum flexural strength of 57.16 MPa was attainable at process parameters of 27.27 wt. %, 4.18 wt. %, 3.95 MPa, and 160 ˚C for fiber proportion, particulate proportion, moulding pressure and temperature respectively yielding 34.2 % improvement over the reference 80/20-vPET/rPET matrix. Model validation experiment undergone with the combined parameters and deviation of +0.036 was noted. Since the deviation is insignificant, the model is concluded to be statistically fit for predicting the flexural strength of the developed eco-composite.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 822
Author(s):  
Christine Thanner ◽  
Martin Eibelhuber

Ultraviolet (UV) Nanoimprint Lithography (NIL) is a replication method that is well known for its capability to address a wide range of pattern sizes and shapes. It has proven to be an efficient production method for patterning resist layers with features ranging from a few hundred micrometers and down to the nanometer range. Best results can be achieved if the fundamental behavior of the imprint resist and the pattern filling are considered by the equipment and process parameters. In particular, the material properties and pattern size and shape play a crucial role. For capillary force-driven filling behavior it is important to understand the influencing parameters and respective failure modes in order to optimize the processes for reliable full wafer manufacturing. In this work, the nanoimprint results obtained for different pattern geometries are compared with respect to pattern quality and residual layer thickness: The comprehensive overview of the relevant process parameters is helpful for setting up NIL processes for different nanostructures with minimum layer thickness.


Sign in / Sign up

Export Citation Format

Share Document