The use of different by-products in the production of lightweight alkali activated building materials

2017 ◽  
Vol 135 ◽  
pp. 315-322 ◽  
Author(s):  
Laura Dembovska ◽  
Diana Bajare ◽  
Vilma Ducman ◽  
Lidija Korat ◽  
Girts Bumanis
2021 ◽  
Vol 13 (17) ◽  
pp. 9938
Author(s):  
Nuno Cristelo ◽  
Fernando Castro ◽  
Tiago Miranda ◽  
Zahra Abdollahnejad ◽  
Ana Fernández-Jiménez

The sustainability of resources is becoming a worldwide concern, including construction and building materials, especially with the alarming increase rate in global population. Alternative solutions to ordinary Portland cement (OPC) as a concrete binder are being studied, namely the so-called alkali-activated cements (AAC). These are less harmful to the environment, as lower CO2 emissions are associated with their fabrication, and their mechanical properties can be similar to those of the OPC. The aim of developing alkali-activated materials (AAM) is the maximization of the incorporated recycled materials, which minimises the CO2 emissions and cost, while also achieving acceptable properties for construction applications. Therefore, various efforts are being made to produce sustainable construction materials based on different sources and raw materials. Recently, significant attention has been raised from the by-products of the steelmaking industry, mostly due to their widespread availability. In this paper, ladle slag (LS) resulting from steelmaking operations was studied as the main precursor to produce AAC, combined with phosphating bath sludge—or phosphate sludge (PS)—and aluminium anodising sludge (AS), two by-products of the surface treatment of metals, in replacement rates of 10 and 20 wt.%. The precursors were activated by two different alkaline solutions: a combination of commercial sodium hydroxide and sodium silicate (COM), and a disposed solution from the cleaning of aluminium extrusion steel dies (CLE). This study assesses the influence of these by-products from the steelmaking industry (PS, AS and CLE) on the performance of the alkali-activated LS, and specifically on its fresh and hardened state properties, including rheology, heat of hydration, compressive strength and microstructure and mineralogy (X-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy and Fourier transform infra-red. The results showed that the CLE had no negative impact on the strength of the AAM incorporating PS or/and AS, while increasing the strength of the LS alone by 2×. Additionally, regardless of the precursor combination, the use of a commercial activator (COM) led to more fluid pastes, compared with the CLE.


2014 ◽  
Vol 803 ◽  
pp. 144-147 ◽  
Author(s):  
J. Temuujin ◽  
A. Minjigmaa ◽  
U. Bayarzul ◽  
Ts. Zolzaya ◽  
B. Davaabal ◽  
...  

With the increasing rate of depletion of natural raw materials for production of building materials, their sustainable usage is clearly an important topic for consideration. For instance, 1 tonne ordinary Portland cement (OPC) requires 1.7 tonnes of raw materials, 1.0 tonne of coal and 100 kWh of electricity. One tonne of cement emits 0.8 - 1 tonne of CO2 into atmosphere globally contributing ~5% of total manmade carbon dioxide. Therefore, the development of new, sustainable, low carbon footprint construction materials is an important task for materials scientists and civil engineers. One type of binder that is attracting particular attention around the world is alkali-aluminosilicate chemistry based material the so-called geopolymers. In this presentation we will discuss the fundamentals of geopolymer chemistry and the similarities to and differences from conventional alkali activated materials chemistry. Particular attention will be given to our latest results on the preparation of geopolymer type paste and concrete from fly ash. Mechanical activation of fly ash caused a decrease in porosity with a partial amorphisation of the crystalline constituents. Geopolymer type paste prepared from 30 minute milled Darkhan pond ash showed increase in 7 day compressive strengths by 7 times reaching of 15.4 (4.6) MPa. Keywords: Geopolymer binder, alkali-activated materials, coal combustion by products


2018 ◽  
Vol 149 ◽  
pp. 01002 ◽  
Author(s):  
F. Puertas ◽  
M.M: Alonso ◽  
S. Gismera ◽  
M. Lanzón ◽  
M.T. Blanco-Varela

A clear alternative to reach the goal of sustainable development in the Construction Sector is the development of alternative building materials to Ordinary Portland Cement (OPC) in a more energetically as well as environmentally eco-efficient way. Alkaline cements (Alkali-Activated Materials, AAMs) and geopolymers meet these requirements; and they are based on the alkali activation of aluminosilicates (mainly waste and industrial by-products, such as blast furnace slag, fly ash and ceramic waste) in highly alkaline solutions. AAMs cements and concretes are notable for being very durable and mechanically resistant. However, to date their rheological behaviour is not well controlled and there is little understanding of it, with very disparate experimental data. Despite this, their rheological behaviour is not fully understood and little is known on the disparate data obtained in AAM pastes. Moreover, the common additives used in the preparation of OPC concretes and the rheology modifiers/controllers are also unstable in the AAMs systems. Understanding and controlling the rheology of the AAMs systems will ultimately determine whether they can be implemented in the market, and will open up greater competitive possibilities in a crisis-affected sector. A systematic study of the factors that affect the rheological properties of AAMs (pastes, mortars and concretes) is therefore necessary in order to ultimately develop more resistant and durable materials.


2021 ◽  
Vol 13 (5) ◽  
pp. 2756
Author(s):  
Federica Vitale ◽  
Maurizio Nicolella

Because the production of aggregates for mortar and concrete is no longer sustainable, many attempts have been made to replace natural aggregates (NA) with recycled aggregates (RA) sourced from factories, recycling centers, and human activities such as construction and demolition works (C&D). This article reviews papers concerning mortars with fine RA from C&D debris, and from the by-products of the manufacturing and recycling processes of building materials. A four-step methodology based on searching, screening, clustering, and summarizing was proposed. The clustering variables were the type of aggregate, mix design parameters, tested properties, patents, and availability on the market. The number and the type of the clustering variables of each paper were analysed and compared. The results showed that the mortars were mainly characterized through their physical and mechanical properties, whereas few durability and thermal analyses were carried out. Moreover, few fine RA were sourced from the production waste of construction materials. Finally, there were no patents or products available on the market. The outcomes presented in this paper underlined the research trends that are useful to improve the knowledge on the suitability of fine RA from building-related processes in mortars.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 953
Author(s):  
Michał Łach ◽  
Reda A. Gado ◽  
Joanna Marczyk ◽  
Celina Ziejewska ◽  
Neslihan Doğan-Sağlamtimur ◽  
...  

Alkali activated cement (AAC) can be manufactured from industrial by-products to achieve goals of “zero-waste” production. We discuss in detail the AAC production process from (waste) post-production clay, which serves as the calcium-rich material. The effect of different parameters on the changes in properties of the final product, including morphology, phase formation, compressive strength, resistance to the high temperature, and long-term curing is presented. The drying and grinding of clay are required, even if both processes are energy-intensive; the reduction of particle size and the increase of specific surface area is crucial. Furthermore, calcination at 750 °C ensure approximately 20% higher compressive strength of final AAC in comparison to calcination performed at 700 °C. It resulted from the different ratio of phases: Calcite, mullite, quartz, gehlenite, and wollastonite in the final AAC. The type of activators (NaOH, NaOH:KOH mixtures, KOH) affected AAC mechanical properties, significantly. Sodium activators enabled obtaining higher values of strength. However, if KOH is required, the supplementation of initial materials with fly ash or metakaolin could improve the mechanical properties and durability of AAC, even c.a. 28%. The presented results confirm the possibility of recycling post-production clay from the Raciszyn II Jurassic limestone deposit.


Author(s):  
Herinjaka Haga Ratsimbazafy ◽  
Aurélie Laborel-Préneron ◽  
Camille Magniont ◽  
Philippe Evon

The valorization of available agricultural by-products is important for the development of bio-aggregate based concretes as eco-friendly solutions for building materials. However, their diversity requires to assess their potential of use in vegetal concretes. This study aims to propose simple and relevant multi-physical characterization methods for plant aggregates. Basic and complementary characterizations were carried out on hemp shiv as a reference plant aggregate, and nine by-products available in the South-West part of France, i.e., oleaginous flax shiv, sunflower pith and bark, coriander straw, wheat straw, wheat chaff, corn shuck, miscanthus stem and vine shoot. The basic characterizations performed were those recommended by the TC-RILEM 236 BBM, i.e., particle size distribution, bulk density, water absorption and thermal conductivity. Complementary characterizations have also been proposed, taking into account the possible environment of the binder and the vegetal concrete manufacturing method. The additional tests developed or adapted from previous research assess the following properties: the content of water-soluble compounds at pH 7 and 12, the dry density of plant aggregates compacted in wet state, the real water absorption after compaction and the compression behavior of these compacted aggregates. This complete characterization highlights the distinct behavior of the different agroresources and allows to correlate these characteristics to the use properties of hardened composites.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1134 ◽  
Author(s):  
Ilda Tole ◽  
Magdalena Rajczakowska ◽  
Abeer Humad ◽  
Ankit Kothari ◽  
Andrzej Cwirzen

An efficient solution to increase the sustainability of building materials is to replace Portland cement with alkali-activated materials (AAM). Precursors for those systems are often based on water-cooled ground granulated blast furnace slags (GGBFS). Quenching of blast furnace slag can be done also by air but in that case, the final product is crystalline and with a very low reactivity. The present study aimed to evaluate the cementitious properties of a mechanically activated (MCA) air-cooled blast furnace slag (ACBFS) used as a precursor in sodium silicate alkali-activated systems. The unreactive ACBFS was processed in a planetary ball mill and its cementing performances were compared with an alkali-activated water-cooled GGBFS. Mixes based on mechanically activated ACBFS reached the 7-days compressive strength of 35 MPa and the 28-days compressive strength 45 MPa. The GGBFS-based samples showed generally higher compressive strength values.


2015 ◽  
Vol 1122 ◽  
pp. 219-224 ◽  
Author(s):  
Filip Khestl ◽  
Veronika Šulková ◽  
Pavel Mec

The work deals with possibilities using of glassy slag produced during the combustion of biomass in construction. This is a waste product with glass characteristic, which may also contain ash and other pollutants. This waste is significantly different according to the used types of biomass, soil, temperature and time of combustion. Its structure is mostly porous and glassy. Building materials in which may be applied are cementitious or alkali-activated composites in which can appear in due to its nature as a filler or binder. In the paper the basic characteristics with the focus on use of this slag as a coarse aggregate were examined.


Sign in / Sign up

Export Citation Format

Share Document