Genomic analysis of the core components of ABA signaling reveals their possible role in abiotic stress response in cassava

2019 ◽  
Vol 167 ◽  
pp. 103855 ◽  
Author(s):  
Hui Zhao ◽  
Chunlai Wu ◽  
Yan Yan ◽  
Weiwei Tie ◽  
Zehong Ding ◽  
...  
2020 ◽  
Vol 21 (20) ◽  
pp. 7755
Author(s):  
Leelyn Chong ◽  
Pengcheng Guo ◽  
Yingfang Zhu

As an evolutionarily conserved multi-protein complex, the Mediator complex modulates the association between transcription factors and RNA polymerase II to precisely regulate gene transcription. Although numerous studies have shown the diverse functions of Mediator complex in plant development, flowering, hormone signaling, and biotic stress response, its roles in the Abscisic acid (ABA) signaling pathway and abiotic stress response remain largely unclear. It has been recognized that the phytohormone, ABA, plays a predominant role in regulating plant adaption to various abiotic stresses as ABA can trigger extensive changes in the transcriptome to help the plants respond to environmental stimuli. Over the past decade, the Mediator complex has been revealed to play key roles in not only regulating the ABA signaling transduction but also in the abiotic stress responses. In this review, we will summarize current knowledge of the Mediator complex in regulating the plants’ response to ABA as well as to the abiotic stresses of cold, drought and high salinity. We will particularly emphasize the involvement of multi-functional subunits of MED25, MED18, MED16, and CDK8 in response to ABA and environmental perturbation. Additionally, we will discuss potential research directions available for further deciphering the role of Mediator complex in regulating ABA and other abiotic stress responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Tang ◽  
Junbo Yang ◽  
Hongchao Duan ◽  
Guifang Jia

As the most abundant and reversible chemical modification in eukaryotic mRNA, the epitranscriptomic mark N6-methyladenine (m6A) regulates plant development and stress response. We have previously characterized that ALKBH10B is an Arabidopsis mRNA m6A demethylase and regulates floral transition. However, it is unclear whether ALKBH10B plays a role in abiotic stress response. Here, we found that the expression of ALKBH10B is increased in response to abscisic acid (ABA), osmotic, and salt stress. The alkbh10b mutants showed hypersensitive to ABA, osmotic, and salt stress during seed germination. Transcriptome analysis revealed that the expression of several ABA response genes is upregulated in alkbh10b-1 than that of wild type, indicating ALKBH10B negatively affects the ABA signaling. Furthermore, m6A sequencing showed that ABA signaling genes, including PYR1, PYL7, PYL9, ABI1, and SnRK2.2 are m6A hypermethylated in alkbh10b-1 after ABA treatment. Taken together, our work demonstrated that ALKBH10B negatively modulates ABA response during seed germination in Arabidopsis.


2016 ◽  
pp. pp.00035.2016 ◽  
Author(s):  
Elizabeth Kalinda Brauer ◽  
Nagib Ahsan ◽  
Renee Dale ◽  
Naohiro Kato ◽  
Alison E Coluccio ◽  
...  

2014 ◽  
Vol 78 (6) ◽  
pp. 951-963 ◽  
Author(s):  
Ananda Mustafiz ◽  
Ajit Ghosh ◽  
Amit K. Tripathi ◽  
Charanpreet Kaur ◽  
Akshay K. Ganguly ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenqing Zheng ◽  
Liang Du

Abstract Background The deubiquitinase (DUB) family constitutes a group of proteases that regulate the stability or reverse the ubiquitination of many proteins in the cell. These enzymes participate in cell-cycle regulation, cell division and differentiation, diverse physiological activities such as DNA damage repair, growth and development, and response to stress. However, limited information is available on this family of genes in woody plants. Results In the present study, 88 DUB family genes were identified in the woody model plant Populus trichocarpa, comprising 44 PtrUBP, 3 PtrUCH, 23 PtrOTU, 4 PtrMJD, and 14 PtrJAMM genes with similar domains. According to phylogenetic analysis, the PtrUBP genes were classified into 16 groups, the PtrUCH genes into two, the PtrOTU genes into eight, the PtrMJD genes into two, and the PtrJAMM genes into seven. Members of same subfamily had similar gene structure and motif distribution characteristics. Synteny analysis of the DUB family genes from P. thrchocarpa and four other plant species provided insight into the evolutionary traits of DUB genes. Expression profiles derived from previously published transcriptome data revealed distinct expression patterns of DUB genes in various tissues. On the basis of the results of analysis of promoter cis-regulatory elements, we selected 16 representative PtrUBP genes to treatment with abscisic acid, methyl jasmonate, or salicylic acid applied as a foliar spray. The majority of PtrUBP genes were upregulated in response to the phytohormone treatments, which implied that the genes play potential roles in abiotic stress response in Populus. Conclusions The results of this study broaden our understanding of the DUB family in plants. Analysis of the gene structure, conserved elements, and expression patterns of the DUB family provides a solid foundation for exploration of their specific functions in Populus and to elucidate the potential role of PtrUBP gene in abiotic stress response.


Author(s):  
Geoffrey Onaga ◽  
Kerstin Wydra

Abstract This chapter provides an overview of the recent significant perspectives on molecules involved in response and tolerance to drought and salinity, the 2 major abiotic stresses affecting crop production, and highlights major molecular components identified in major cereals.


Author(s):  
Varucha Misra ◽  
A.K. Mall ◽  
M. Iqbal R. Khan ◽  
Mohammad Israil Ansari

Sign in / Sign up

Export Citation Format

Share Document