The therapeutic potential of natural compounds against Alzheimer's disease: A preclinical pharmacological study in both sexes

2016 ◽  
Vol 33 (S1) ◽  
pp. S544-S544
Author(s):  
N. Kokras ◽  
M. Dimitriadou ◽  
I. Sotiropoulos ◽  
A.L. Skaltsounis ◽  
A. Tsarbopoulos ◽  
...  

Alzheimer's disease (AD), a neurodegenerative neuropsychiatric disorder, is often comorbid with depression and anxiety. Neuropsychiatric disorders are also characterized by sex differences. However, most preclinical pharmacological studies are conducted using only males. Herein, we used male and female twelve-month-old mice (3xTg) expressing mutated forms of human proteins Tau, APP and Presenilin1. These mice are considered a valid animal model of AD. We investigated the effects of the natural compound trans-crocin-4 (TC-4), which is derived from Crocus sativus and the olive compound oleuropein on the cognitive, depressive and anxious profile of 3xTg mice. We found that male and female 3xTg mice exhibited reduced locomotor activity and oleuropeine treatment (100 mg/kg i.p., for 21 days) did not reverse this phenotype. In addition, anxiety- and depressive-like behaviors were not affected by genotype, sex or oleuropeine treatment. Interestingly, oleuropeine exhibited a tendency to enhance cognitive performance in male 3xTg mice. Treatment with TC-4 (50 and 150 mg/kg, i.p., acutely or chronically for 10 days) affected locomotor activity in a sex-differentiated manner. Interestingly, acute TC-4 clearly enhanced cognitive performance in all groups although it reduced center entries in the open field. Additionally, chronic TC-4 treatment enhanced novel object discrimination mainly in male 3xTg mice. Our findings highlight the potential of those natural compounds, which warrant further investigation but also emphasize the benefits of including both males and females in preclinical pharmacological studies.Disclosure of interestThe authors have not supplied their declaration of competing interest.

2020 ◽  
Vol 78 (2) ◽  
pp. 619-626
Author(s):  
Noel Torres-Acosta ◽  
James H. O’Keefe ◽  
Evan L. O’Keefe ◽  
Richard Isaacson ◽  
Gary Small

Background: Alzheimer’s disease (AD) is increasingly prevalent and over 99% of drugs developed for AD have failed in clinical trials. A growing body of literature suggests that potent inhibitors of tumor necrosis factor-α (TNF-α) have potential to improve cognitive performance. Objective: In this review, we summarize the evidence regarding the potential for TNF-α inhibition to prevent AD and improve cognitive function in people at risk for dementia. Methods: We conducted a literature review in PubMed, screening all articles published before July 7, 2019 related to TNF blocking agents and curcumin (another TNF-α inhibitor) in the context of AD pathology. The keywords in the search included: AD, dementia, memory, cognition, TNF-α, TNF inhibitors, etanercept, infliximab, adalimumab, golimumab, and curcumin. Results: Three large epidemiology studies reported etanercept treated patients had 60 to 70% lower odds ratio (OR) of developing AD. Two small-randomized control trials (RCTs) demonstrated an improvement in cognitive performance for AD patients treated with etanercept. Studies using animal models of dementia also reported similar findings with TNF blocking agents (etanercept, infliximab, adalimumab, Theracurmin), which appeared to improve cognition. A small human RCT using Theracurmin, a well-absorbed form of curcumin that lowers TNF-α, showed enhanced cognitive performance and decreased brain levels of amyloid-β plaque and tau tangles. Conclusion: TNF-α targeted therapy is a biologically plausible approach to the preservation of cognition, and warrants larger prospective RCTs to further investigate potential benefits in populations at risk of developing AD.


2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


Author(s):  
Georgiana Uță ◽  
Denisa Ștefania Manolescu ◽  
Speranța Avram

Background.: Currently, the pharmacological management in Alzheimer's disease is based on several chemical structures, represented by acetylcholinesterase and N-methyl-D-aspartate (NMDA) receptor ligands, with still unclear molecular mechanisms, but severe side effects. For this reason, a challenge for Alzheimer's disease treatment remains to identify new drugs with reduced side effects. Recently, the natural compounds, in particular certain chemical compounds identified in the essential oil of peppermint, sage, grapes, sea buckthorn, have increased interest as possible therapeutics. Objectives.: In this paper, we have summarized data from the recent literature, on several chemical compounds extracted from Salvia officinalis L., with therapeutic potential in Alzheimer's disease. Methods.: In addition to the wide range of experimental methods performed in vivo and in vitro, also we presented some in silico studies of medicinal compounds. Results. Through this mini-review, we present the latest information regarding the therapeutic characteristics of natural compounds isolated from Salvia officinalis L. in Alzheimer's disease. Conclusion.: Thus, based on the information presented, we can say that phytotherapy is a reliable therapeutic method in a neurodegenerative disease.


Author(s):  
Lili Pan ◽  
Yu Ma ◽  
Yunchun Li ◽  
Haoxing Wu ◽  
Rui Huang ◽  
...  

Abstract:: Recent studies have proven that the purinergic signaling pathway plays a key role in neurotransmission and neuromodulation, and is involved in various neurodegenerative diseases and psychiatric disorders. With the characterization of the subtypes of receptors in purinergic signaling, i.e. the P1 (adenosine), P2X (ion channel) and P2Y (G protein-coupled), more attentions were paid to the pathophysiology and therapeutic potential of purinergic signaling in central nervous system disorders. Alzheimer’s disease (AD) is a progressive and deadly neurodegenerative disease that is characterized by memory loss, cognitive impairment and dementia. However, as drug development aimed to prevent or control AD follows a series of failures in recent years, more researchers focused on the neuroprotection-related mechanisms such as purinergic signaling in AD patients to find a potential cure. This article reviews the recent discoveries of purinergic signaling in AD, summaries the potential agents as modulators for the receptors of purinergic signaling in AD related research and treatments. Thus, our paper provided an insight for purinergic signaling in the development of anti-AD therapies.


2020 ◽  
Vol 17 (2) ◽  
pp. 141-157 ◽  
Author(s):  
Dubravka S. Strac ◽  
Marcela Konjevod ◽  
Matea N. Perkovic ◽  
Lucija Tudor ◽  
Gordana N. Erjavec ◽  
...  

Background: Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer’s disease. Objective: The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer’s disease. Method: PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. Results: We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer’s disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. Conclusion: Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer’s disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.


2019 ◽  
Author(s):  
Cláudia Yang Santos ◽  
Christine Getter ◽  
John Stoukides ◽  
Brian Ott ◽  
Stephen Salloway ◽  
...  

BACKGROUND The precise mechanisms whereby cardiovascular risk factors increase the risk of Alzheimer’s disease (AD) have not been delineated. We reported that microvessels isolated from AD brains overexpress a diverse array of neurotoxic and inflammatory proteins, which is consistent with the process of vascular activation. In pre-clinical studies using AD animal models we showed that a vascular activation inhibitor reduced vascular-derived neuroinflammation and improved cognitive performance. Thrombin is a key mediator of cerebrovascular activation in AD. OBJECTIVE This study aims to investigate the safety and potential efficacy of the direct thrombin inhibitor dabigatran, in patients with mild cognitive impairment (MCI) or mild AD to decrease vascular-derived neuroinflammation and improve cognitive performance. METHODS Participants will be enrolled then evaluated quarterly throughout the 24-month study. This is a 24-month randomized-control, double-blind, placebo-controlled, multicenter, delayed-start, pilot study evaluating thrombin inhibition in people with biomarker-confirmed MCI probably due to AD or mild AD. 40 - 60 participants will be recruited between 50 - 85 years old. In the initial 9-months of study, either dabigatran or placebo will be orally administered to patients at a dose of 150 mg per day. After 9 months of the placebo-control (Phase I), the placebo arm will cross-over to an active, open-label (Phase II) where all patients will be treated with a 150 mg daily dose of dabigatran orally for an additional 12 months. A 3-month non-treatment follow-up period will assess duration of effects. RESULTS Beginning in July 2019, and concluding in August 2022, this study is expected to publish final results in January 2023. CONCLUSIONS BEACON is a first-in-kind randomized clinical trial targeting thrombin activation in AD therapeutics. This trial will stimulate translational investigations of an FDA-approved drugs in a newly defined therapeutic areas. CLINICALTRIAL Clinicaltrials.gov NCT03752294


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Onishi ◽  
Ryouta Maeda ◽  
Michiko Terada ◽  
Sho Sato ◽  
Takahiro Fujii ◽  
...  

AbstractAccumulation of tau protein is a key pathology of age-related neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Those diseases are collectively termed tauopathies. Tau pathology is associated with axonal degeneration because tau binds to microtubules (MTs), a component of axon and regulates their stability. The acetylation state of MTs contributes to stability and histone deacetylase 6 (HDAC6) is a major regulator of MT acetylation status, suggesting that pharmacological HDAC6 inhibition could improve axonal function and may slow the progression of tauopathy. Here we characterize N-[(1R,2R)-2-{3-[5-(difluoromethyl)-1,3,4-oxadiazol-2-yl]-5-oxo-5H,6H,7H-pyrrolo[3,4-b]pyridin-6-yl}cyclohexyl]-2,2,3,3,3-pentafluoropropanamide (T-518), a novel, potent, highly selective HDAC6 inhibitor with clinically favorable pharmacodynamics. T-518 shows potent inhibitory activity against HDAC6 and superior selectivity over other HDACs compared with the known HDAC6 inhibitors in the enzyme and cellular assays. T-518 showed brain penetration in an oral dose and blocked HDAC6-dependent tubulin deacetylation at Lys40 in mouse hippocampus. A 2-week treatment restored impaired axonal transport and novel object recognition in the P301S tau Tg mouse, tauopathy model, while a 3-month treatment also decreased RIPA-insoluble tau accumulation. Pharmaceutical inhibition of HDAC6 is a potential therapeutic strategy for tauopathy, and T-518 is a particularly promising drug candidate.


Author(s):  
Ding-Yuan Tian ◽  
Yuan Cheng ◽  
Zhen-Qian Zhuang ◽  
Chen-Yang He ◽  
Qian-Guang Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document