In vitro protective effects of Thymus quinquecostatus Celak extracts on t-BHP-induced cell damage through antioxidant activity

2012 ◽  
Vol 50 (11) ◽  
pp. 4191-4198 ◽  
Author(s):  
Yon-Suk Kim ◽  
Seung-Jae Lee ◽  
Jin-Woo Hwang ◽  
Eun-Kyung Kim ◽  
Seong-Eun Kim ◽  
...  
2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1931
Author(s):  
Glenda Calniquer ◽  
Marina Khanin ◽  
Hilla Ovadia ◽  
Karin Linnewiel-Hermoni ◽  
David Stepensky ◽  
...  

Oral carotenoids and polyphenols have been suggested to induce photo-protective effects. The aim of the study was to test whether the combination of carotenoids and polyphenols produce greater protective effects from UV-induced damage to skin cells. Such damage is characterized by inflammation and oxidative stress; thus, the photo-protective effect can be partially explained by modulating the nuclear factor kappa B (NFκB) and antioxidant response element/Nrf2 (ARE/Nrf2) transcription systems, known as important regulators of these two processes. Indeed, it was found in keratinocytes that carotenoids and polyphenols inhibit UVB-induced NFκB activity and release of cytokine IL-6. A combination of tomato extract with rosemary extract inhibited UVB-induced release of IL-6 more than each of the compounds alone. Moreover, this combination synergistically activated ARE/Nrf2 transcription systems. Inflammatory cytokines such as IL-6 and TNFα induce the expression of matrix metalloproteinases (MMPs), which leads to collagen breakdown; thus, it is important to note that carnosic acid reduced TNFα-induced MMP-1 secretion from human dermal fibroblasts. The in vitro results suggest beneficial effects of phytonutrient combinations on skin health. To assure that clinical experiments to prove such effects in humans are feasible, the human bioavailability of carotenoids from tomato extract was tested, and nearly a twofold increase in their plasma concentrations was detected. This study demonstrates that carotenoids and polyphenols cooperate in balancing UV-induced skin cell damage, and suggests that NFκB and ARE/Nrf2 are involved in these effects.


2021 ◽  
Vol 22 (13) ◽  
pp. 7232
Author(s):  
Gloria Lazzeri ◽  
Carla L. Busceti ◽  
Francesca Biagioni ◽  
Cinzia Fabrizi ◽  
Gabriele Morucci ◽  
...  

Norepinephrine (NE) neurons and extracellular NE exert some protective effects against a variety of insults, including methamphetamine (Meth)-induced cell damage. The intimate mechanism of protection remains difficult to be analyzed in vivo. In fact, this may occur directly on target neurons or as the indirect consequence of NE-induced alterations in the activity of trans-synaptic loops. Therefore, to elude neuronal networks, which may contribute to these effects in vivo, the present study investigates whether NE still protects when directly applied to Meth-treated PC12 cells. Meth was selected based on its detrimental effects along various specific brain areas. The study shows that NE directly protects in vitro against Meth-induced cell damage. The present study indicates that such an effect fully depends on the activation of plasma membrane β2-adrenergic receptors (ARs). Evidence indicates that β2-ARs activation restores autophagy, which is impaired by Meth administration. This occurs via restoration of the autophagy flux and, as assessed by ultrastructural morphometry, by preventing the dissipation of microtubule-associated protein 1 light chain 3 (LC3) from autophagy vacuoles to the cytosol, which is produced instead during Meth toxicity. These findings may have an impact in a variety of degenerative conditions characterized by NE deficiency along with autophagy impairment.


2021 ◽  
Vol 41 (1) ◽  
pp. 16-27
Author(s):  
J. O. Daramola ◽  
T. A. Sorongbe ◽  
O. M. Onagbesan ◽  
A. V. Jegede ◽  
A. O. Ladokun ◽  
...  

Antioxidants are linked with sperm viability because of their protective effects against cell damage during preservation. In order to enhance the life span of refrigerated buck semen, this study was carried out to determine the effect of fruit-rich antioxidants on spermatozoa viability and lipid peroxidation (LPO) of buck semen during liquid storage. Pooled semen from five Red Sokoto bucks was diluted with Tris-egg yolk based extender and supplemented each with juices from pawpaw tomato and watermelon at 0, 2.5, 5, 7.5 and 10/ 100 ml respectively. Following dilution, the semen samples were assessed subjectively after in vitro storage at 5°C for 24, 48, 72 and 96 hours as regards sperm motility, abnormalities, and acrosome status using a phase-contrast microscope. The concentration of malondialdehyde (MDA) as indices of lipid peroxidation (LPO) in the stored semen was measured in thiobarbituric acid reactive substances (TBARS) at 24, 48, 72 and 96 hours. The results showed highest progressive motility in watermelon juice at 2.5% (P<0.05) during the first 24 hours of storage while the lowest progressive motility was recorded at various levels of pawpaw juice (P<0.05). After 48 hours of storage, extender supplemented with watermelon and tomato juices had better progressive motility compared to control except 7.5% and 10%% of tomato juice (P<0.05). Irrespective of level of juice in the extender, the percentage of intact acrosome was similar among the various juices and control. The results showed that spermatozoa extended with watermelon juice had the lowest (P<0.05) percentage abnormality compared to other extenders at 24, 48, 72 and 96 hours of storage. Higher (P<0.05) percent spermatozoa abnormality compared to other fruit juices and control was observed at 72 and 96 hours of storage in spermatozoa extended with pawpaw juice. Significant reductions of MDA concentrations were achieved by addition of fruit-rich antioxidants to Tris-egg yolk based extender during the first 72 hours and the reduction was much pronounced in extender supplemented with pawpaw juice compared to control (P<0.05). The findings reveal that fruit-rich antioxidants from watermelon and tomato have protective ability to maintain sperm viability and to reduce concentration MDA of buck semen during liquid storage.


2000 ◽  
Vol 13 (1) ◽  
pp. 79-106 ◽  
Author(s):  
Garry G. Duthie ◽  
Susan J. Duthie ◽  
Janet A. M. Kyle

AbstractCertain dietary antioxidants such as vitamin E and vitamin C are important for maintaining optimum health. There is now much interest in polyphenolic products of the plant phenylpropanoid pathway as they have considerable antioxidant activityin vitroand are ubiquitous in our diet. Rich sources include tea, wine, fruits and vegetables although levels are affected by species, light, degree of ripeness, processing and storage. This confounds the formulation of databases for the estimation of dietary intakes. Most attention to date has focused on the flavonoids, a generic term which includes chalcones, flavones, flavanones, flavanols and anthocyanins. There is little convincing epidemiological evidence that intakes of polyphenols are inversely related to the incidence of cancer whereas a number of studies suggest that high intakes of flavonoids may be protective against CHD. In contrast, numerous cell culture and animal models indicate potent anticarcinogenic activity by certain polyphenols mediated through a range of mechanisms including antioxidant activity, enzyme modulation, gene expression, apoptosis, upregulation of gap junction communication and P-glycoprotein activation. Possible protective effects against heart disease may be due to the ability of some polyphenols to prevent the oxidation of LDL to an atherogenic form although anti-platelet aggregation activity and vasodilatory properties are also reported. However, some polyphenols are toxic in mammalian cells. Thus, until more is known about their bioavailability, metabolism and intracellular location, increasing intakes of polyphenols by supplements or food fortification may be unwise.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Salma Baig ◽  
Ainnul Hamidah Syahadah Azizan ◽  
Hanumantha Rao Balaji Raghavendran ◽  
Elango Natarajan ◽  
Sangeetha Naveen ◽  
...  

We have determined the protective effects of Thymus serpyllum (TS) extract and nanoparticle-loaded TS on hydrogen peroxide-induced cell death of mesenchymal stromal cells (MSCs) in vitro. Gas chromatography–mass spectroscopy confirmed the spectrum of active components in the extract. Out of the three different extracts, the hexane extract showed significant free radical scavenging activity. Treatment of MSCs with H2O2 (hydrogen peroxide) significantly increased intracellular cell death; however, pretreatment with TS extract and nanoparticle-loaded TS (200 μg/ml) suppressed H2O2-induced elevation of Cyt-c and MMP13 and increased the survival rates of MSCs. H2O2-induced (0.1 mM) changes in cytokines were attenuated in the extract and nanoparticles by pretreatment and cotreatment at two time points (p<0.05). H2O2 increased cell apoptosis. In contrast, treatment with nanoparticle-loaded TS suppressed the percentage of apoptosis considerably (p<0.05). Therefore, TS may be considered as a potential candidate for enhancing the effectiveness of MSC transplantation in cell therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jingxuan Sun ◽  
Boyu Yuan ◽  
Yancheng Wu ◽  
Yuhong Gong ◽  
Wenjin Guo ◽  
...  

Alzheimer’s disease (AD) is a common neurodegenerative disease. Aβ plays an important role in the pathogenesis of AD. Sodium butyrate (NaB) is a short-chain fatty acid salt that exerts neuroprotective effects such as anti-inflammatory, antioxidant, antiapoptotic, and cognitive improvement in central nervous system diseases. The aim of this study is to research the protective effects of NaB on neurons against Aβ toxicity and to uncover the underlying mechanisms. The results showed that 2 mM NaB had a significant improvement effect on Aβ-induced N2a cell injury, by increasing cell viability and reducing ROS to reduce injury. In addition, by acting on the GPR109A receptor, NaB regulates the expression of AD-related genes such as APP, NEP, and BDNF. Therefore, NaB protects N2a cells from Aβ-induced cell damage through activating GPR109A, which provides an innovative idea for the treatment of AD.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ke-Xin Zhang ◽  
Jian-Bin Tan ◽  
Cheng-Liang Xie ◽  
Rong-Bo Zheng ◽  
Xiao-Dan Huang ◽  
...  

Herbal tea with antioxidant ingredients has gained increasing attention in the field of functional foods due to their amelioration potential in aging-related diseases. Wanglaoji herbal tea (WHT) is a kind of traditional beverage made from herbal materials. This study was performed to investigate its antioxidant activity and identify its protective effect on a H2O2-induced cell damage model. In this study, we identified six kinds of phenolic acids with antioxidant activity in WHT, among which rosmarinic acid had the highest content and the highest contribution ratio to the antioxidant activity of WHT. Moreover, compared with the H2O2-induced damage group, the WHT treatment group can significantly increase the viability of cells and decrease the ratio of senescence-associated β-galactosidase-positive cells, intracellular malondialdehyde levels, and the percentage of G1 phase. Furthermore, enrichment analysis of differentially expressed genes revealed that heme oxygenase1 (HMOX1) was a key gene for protective effect of WHT on oxidative stress-induced cell damage. Thus, WHT exerted protective effects not only by scavenging reactive oxygen species but also by inducing the expression of cytoprotective genes by activating the HMOX1 pathway, which showed that WHT had a potential of promoting health by reducing oxidative stress-induced cell damage.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoye Fan ◽  
Wei Wei ◽  
Jingbo Huang ◽  
Liping Peng ◽  
Xinxin Ci

Cisplatin (CDDP) is a widely used drug for cancer treatment that exhibits major side effects in normal tissues, such as nephrotoxicity in kidneys. The Nrf2 signaling pathway, a regulator of mitochondrial dysfunction, oxidative stress and inflammation, is a potential therapeutic target in CDDP-induced nephrotoxicity. We explored the underlying mechanisms in wild-type (WT) and Nrf2−/− mice on CDDP-induced renal dysfunction in vivo. We found that Nrf2 deficiency aggravated CDDP-induced nephrotoxicity, and Daph treatment significantly ameliorated the renal injury characterized by biochemical markers in WT mice and reduced the CDDP-induced cell damage. In terms of the mechanism, Daph upregulated the SIRT1 and SIRT6 expression in vivo and in vitro. Furthermore, Daph inhibited the expression level of NOX4, whereas it activated Nrf2 translocation and antioxidant enzymes HO-1 and NQO1, and alleviated oxidative stress and mitochondrial dysfunction. Moreover, Daph suppressed CDDP-induced NF-κB and MAPK inflammation pathways, as well as p53 and cleaved caspase-3 apoptosis pathways. Notably, the protective effects of Daph in WT mice were completely abrogated in Nrf2−/− mice. Moreover, Daph enhanced, rather than attenuated, the tumoricidal effect of CDDP.


Sign in / Sign up

Export Citation Format

Share Document