Role of dietary polyphenols on gut microbiota, their metabolites and health benefits

2021 ◽  
Vol 142 ◽  
pp. 110189
Author(s):  
S. Mithul Aravind ◽  
Santad Wichienchot ◽  
Rong Tsao ◽  
S. Ramakrishnan ◽  
S. Chakkaravarthi
Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 169
Author(s):  
María Callejo ◽  
Joan Albert Barberá ◽  
Juan Duarte ◽  
Francisco Perez-Vizcaino

Pulmonary arterial hypertension (PAH) is characterized by sustained vasoconstriction, vascular remodeling, inflammation, and in situ thrombosis. Although there have been important advances in the knowledge of the pathophysiology of PAH, it remains a debilitating, limiting, and rapidly progressive disease. Vitamin D and iron deficiency are worldwide health problems of pandemic proportions. Notably, these nutritional alterations are largely more prevalent in PAH patients than in the general population and there are several pieces of evidence suggesting that they may trigger or aggravate disease progression. There are also several case reports associating scurvy, due to severe vitamin C deficiency, with PAH. Flavonoids such as quercetin, isoflavonoids such as genistein, and other dietary polyphenols including resveratrol slow the progression of the disease in animal models of PAH. Finally, the role of the gut microbiota and its interplay with the diet, host immune system, and energy metabolism is emerging in multiple cardiovascular diseases. The alteration of the gut microbiota has also been reported in animal models of PAH. It is thus possible that in the near future interventions targeting the nutritional status and the gut dysbiosis will improve the outcome of these patients.


2010 ◽  
Vol 104 (S2) ◽  
pp. S1-S63 ◽  
Author(s):  
Marcel Roberfroid ◽  
Glenn R. Gibson ◽  
Lesley Hoyles ◽  
Anne L. McCartney ◽  
Robert Rastall ◽  
...  

The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, ‘normobiosis’ characterises a composition of the gut ‘ecosystem’ in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to ‘dysbiosis’, in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in ‘prebiotic effects’), defined as: ‘The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.’ Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.


2013 ◽  
Vol 16 (5) ◽  
pp. 435-437 ◽  
Author(s):  
J. Alfredo Martínez ◽  
Usune Etxeberría ◽  
Alicia Galar ◽  
Fermín I. Milagro

Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 982 ◽  
Author(s):  
Mireille Koudoufio ◽  
Yves Desjardins ◽  
Francis Feldman ◽  
Schohraya Spahis ◽  
Edgard Delvin ◽  
...  

Lifestyle factors, especially diet and nutrition, are currently regarded as essential avenues to decrease modern-day cardiometabolic disorders (CMD), including obesity, metabolic syndrome, type 2 diabetes, and atherosclerosis. Many groups around the world attribute these trends, at least partially, to bioactive plant polyphenols given their anti-oxidant and anti-inflammatory actions. In fact, polyphenols can prevent or reverse the progression of disease processes through many distinct mechanisms. In particular, the crosstalk between polyphenols and gut microbiota, recently unveiled thanks to DNA-based tools and next generation sequencing, unravelled the central regulatory role of dietary polyphenols and their intestinal micro-ecology metabolites on the host energy metabolism and related illnesses. The objectives of this review are to: (1) provide an understanding of classification, structure, and bioavailability of dietary polyphenols; (2) underline their metabolism by gut microbiota; (3) highlight their prebiotic effects on microflora; (4) discuss the multifaceted roles of their metabolites in CMD while shedding light on the mechanisms of action; and (5) underscore their ability to initiate host epigenetic regulation. In sum, the review clearly documents whether dietary polyphenols and micro-ecology favorably interact to promote multiple physiological functions on human organism.


Author(s):  
Surajit Pathak ◽  
Pallavi Kesavan ◽  
Anushka Banerjee ◽  
Antara Banerjee ◽  
Gulcin Sagdicoglu Celep ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1370
Author(s):  
Umair Shabbir ◽  
Akanksha Tyagi ◽  
Fazle Elahi ◽  
Simon Okomo Aloo ◽  
Deog-Hwan Oh

Gut microbiota (GM) play a role in the metabolic health, gut eubiosis, nutrition, and physiology of humans. They are also involved in the regulation of inflammation, oxidative stress, immune responses, central and peripheral neurotransmission. Aging and unhealthy dietary patterns, along with oxidative and inflammatory responses due to gut dysbiosis, can lead to the pathogenesis of neurodegenerative diseases, especially Alzheimer’s disease (AD). Although the exact mechanism between AD and GM dysbiosis is still unknown, recent studies claim that secretions from the gut can enhance hallmarks of AD by disturbing the intestinal permeability and blood–brain barrier via the microbiota–gut–brain axis. Dietary polyphenols are the secondary metabolites of plants that possess anti-oxidative and anti-inflammatory properties and can ameliorate gut dysbiosis by enhancing the abundance of beneficial bacteria. Thus, modulation of gut by polyphenols can prevent and treat AD and other neurodegenerative diseases. This review summarizes the role of oxidative stress, inflammation, and GM in AD. Further, it provides an overview on the ability of polyphenols to modulate gut dysbiosis, oxidative stress, and inflammation against AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Audrey I. S. Andersen-Civil ◽  
Pankaj Arora ◽  
Andrew R. Williams

The role of dietary components in immune function has acquired considerable attention in recent years. An important focus area is to unravel the role of bioactive dietary compounds in relation to enteric disease and their impact on gut mucosal immunity. Proanthocyanidins (PAC) are among the most common and most consumed dietary polyphenols, and are characterised by their variable molecular structures and diverse bioactivities. In particular, their anti-oxidative effects and ability to modulate gut microbiota have been widely described. However, there is limited evidence on the mechanism of action of PAC on the immune system, nor is it clearly established how PAC may influence susceptibility to enteric infections. Establishing the sites of action of PAC and their metabolites within the gut environment is fundamental to determine the applicability of PAC against enteric pathogens. Some mechanistic studies have shown that PAC have direct modulatory effects on immune cell signalling, isolated pathogens, and gut mucosal barrier integrity. Boosting the recruitment of immune cells and suppressing the amount of pro-inflammatory cytokines are modulating factors regulated by PAC, and can either be beneficial or detrimental in the course of re-establishing gut homeostasis. Herein, we review how PAC may alter distinct immune responses towards enteric bacterial, viral and parasitic infections, and how the modulation of gut microbiota may act as a mediating factor. Furthermore, we discuss how future studies could help unravel the role of PAC in preventing and/or alleviating intestinal inflammation and dysbiosis caused by enteric disease.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 625 ◽  
Author(s):  
Carolina Cueva ◽  
Mariana Silva ◽  
Iris Pinillos ◽  
Begoña Bartolomé ◽  
M. Victoria Moreno-Arribas

Colorectal cancer (CRC) is the third most diagnosed type of cancer worldwide. Dietary features play an important role in its development, and the involvement of human microbial communities in this pathology has also recently been recognized. Individuals with CRC display alterations in gut bacterial composition and a notably higher abundance of putative oral bacteria in colonic tumors. Many experimental studies and preclinical evidence propose that dietary polyphenols have a relevant role in CRC development and progression, mainly attributed to their immunomodulatory activities. Furthermore, polyphenols can modulate oral and gut microbiota, and in turn, intestinal microbes catabolize polyphenols to release metabolites that are often more active and better absorbed than the original phenolic compounds. The current study aimed to review and summarize current knowledge on the role of microbiota and the interactions between dietary polyphenols and microbiota in relation to CRC development. We have highlighted the mechanisms by which dietary polyphenols and/or their microbial metabolites exert their action on the pathogenesis and prevention of CRC as modulators of the composition and/or activity of oral and intestinal microbiota, including novel screening biomarkers and possible nutritional therapeutic implications.


Author(s):  
Hui Lin ◽  
Liping Meng ◽  
Zhenzhu Sun ◽  
Shiming Sun ◽  
Xingxiao Huang ◽  
...  

Background: Dietary polyphenols help to prevent cardiovascular diseases, and interactions between polyphenols and gut microbiota are known to exist. In this study, we speculated that gut microbiota-mediated metabolite regulation might contribute to the anticardiotoxic effects of yellow wine polyphenolic compound (YWPC) in doxorubicin (DOX)-treated rats. Methods: 16S-rDNA sequencing was performed to analyze the effects of YWPC on the gut microbiota in DOX-treated rats (n=6). Antibiotics were used to investigate the contribution of the altered microbiome to the role of YWPC (n=6). Plasma metabolomics were also analyzed by untargeted gas chromatography-mass spectrometry systems. Results: YWPC ameliorated DOX-mediated cardiotoxicity, as evidenced by increased cardiac and mitochondrial function and reduced levels of inflammation and myocardial apoptosis ( P <0.05 for all). The low abundance of Escherichia – Shigella , Dubosiella , and Allobaculum , along with enrichment of Muribaculaceae_unclassified , Ralstonia , and Rikenellaceae_RC9_gut_group in the gut, suggested that YWPC ameliorated DOX-induced microbial dysbiosis. YWPC also influenced the levels of metabolites altered by DOX, resulting in lower arachidonic acid and linoleic acid metabolism and higher tryptophan metabolite levels ( P <0.05 for all). Correlational studies indicated that YWPC alleviated DOX-induced inflammation and mitochondrial dysfunction by modulating the gut microbial community and its associated metabolites. Antibiotic treatment exacerbated cardiotoxicity in DOX-treated rats, and its effect on the gut microbiota partly abolished the anticardiotoxic effects of YWPC, suggesting that the microbiota is required for the cardioprotective role of YWPC. Conclusions: YWPC protected against DOX-induced cardiotoxicity in a gut microbiota–dependent manner. This supports the use of dietary polyphenols as a therapeutic approach for the treatment of cardiovascular diseases via microbiota regulation.


2021 ◽  
Vol 22 (7) ◽  
pp. 3715
Author(s):  
Kamila Kasprzak-Drozd ◽  
Tomasz Oniszczuk ◽  
Mateusz Stasiak ◽  
Anna Oniszczuk

The human intestine contains an intricate community of microorganisms, referred to as the gut microbiota (GM), which plays a pivotal role in host homeostasis. Multiple factors could interfere with this delicate balance, including genetics, age, medicines and environmental factors, particularly diet. Growing evidence supports the involvement of GM dysbiosis in gastrointestinal (GI) and extraintestinal metabolic diseases. The beneficial effects of dietary polyphenols in preventing metabolic diseases have been subjected to intense investigation over the last twenty years. As our understanding of the role of the gut microbiota advances and our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review firstly overviews the importance of the GM in health and disease and then reviews the role of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis are also discussed.


Sign in / Sign up

Export Citation Format

Share Document