A numerical study on the combustion process for various configurations of burners in the novel ultra-supercritical BP-680 boiler furnace chamber

2016 ◽  
Vol 152 ◽  
pp. 381-389 ◽  
Author(s):  
Bartłomiej Hernik ◽  
Grzegorz Latacz ◽  
Dominik Znamirowski
2013 ◽  
Vol 444-445 ◽  
pp. 1574-1578 ◽  
Author(s):  
Hua Hua Xiao ◽  
Zhan Li Mao ◽  
Wei Guang An ◽  
Qing Song Wang ◽  
Jin Hua Sun

A numerical study of premixed propane/air flame propagation in a closed duct is presented. A dynamically thickened flame (TF) method is applied to model the premixed combustion. The reaction of propane in air is taken into account using a single-step global Arrhenius kinetics. It is shown that the premixed flame undergoes four stages of dynamics in the propagation. The formation of tulip flame phenomenon is observed. The pressure during the combustion process grows exponentially at the finger-shape flame stage and then slows down until the formation of tulip shape. After tulip formation the pressure increases quickly again with the increase of the flame surface area. The vortex motion behind the flame front advects the flame into tulip shape. The study indicates that the TF model is quite reliable for the investigation of premixed propane/air flame propagation.


2014 ◽  
Vol 35 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Bartłomiej Hernik

Abstract Generally, the temperature of flue gases at the furnace outlet is not measured. Therefore, a special computation procedure is needed to determine it. This paper presents a method for coordination of the numerical model of a pulverised fuel boiler furnace chamber with the measuring data in a situation when CFD calculations are made in regard to the furnace only. This paper recommends the use of the classical 0-dimensional balance model of a boiler, based on the use of measuring data. The average temperature of flue gases at the furnace outlet tk" obtained using the model may be considered as highly reliable. The numerical model has to show the same value of tk" . This paper presents calculations for WR-40 boiler. The CFD model was matched to the 0-dimensional tk" value by means of a selection of the furnace wall emissivity. As a result of CFD modelling, the flue gas temperature and the concentration of CO, CO2, O2 and NOx were obtained at the furnace chamber outlet. The results of numerical modelling of boiler combustion based on volumetric reactions and using the Finite-Rate/Eddy-Dissipation Model are presented.


2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


Author(s):  
Michael CH Yam ◽  
Ke Ke ◽  
Ping Zhang ◽  
Qingyang Zhao

A novel beam-to-column connection equipped with shape memory alloy (SMA) plates has been proposed to realize resilient performance under low-to-medium seismic actions. In this conference paper, the detailed 3D numerical technique calibrated by the previous paper is adopted to examine the hysteretic behavior of the novel connection. A parametric study covering a reasonable range of parameters including the thickness of the SMA plate, friction coefficient between SMA plate and beam flange and pre-load of the bolt was carried out and the influence of the parameters was characterized. In addition, the effect of the SMA Belleville washer on the connection performance was also studied. The results of the numerical study showed that the initial connection stiffness and the energy-dissipation capacity of the novel connection can be enhanced with the increase of the thickness of the SMA plate. In addition, the initial connection stiffness and energy-dissipation behavior of the novel connection can be improved by increasing the friction coefficient or pre-load of bolts, whereas the increased friction level could compromise the self-centering behavior of the connection. The hysteretic curves of the numerical models of the connection also implied that the SMA washers may contribute to optimizing the connection behavior by increasing the connection stiffness and energy-dissipation capacity without sacrificing the self-centering behavior.


Author(s):  
Usama J. Mizher ◽  
Peter A. Velmisov

Abstract. The search for new solutions in the field of energy, preventing negative impact on the environment, is one of the priority tasks for modern society. Natural gas occupies a stable position in the demand of the UES of Russia for fossil fuel. Biogas is a possible alternative fuel from organic waste. Biogas has an increased content of carbon dioxide, which affects the speed of flame propagation, and a lower content of methane, which reduces its heat of combustion. However, the combined combustion of natural gas and biogas, provided that the mixture of fuel and oxidizer is well mixed, can, on the one hand, reduce the maximum adiabatic temperature in the combustion chamber of power boilers at TPPs, and, on the other, increase the stability of biogas combustion. For the combined combustion of natural gas and biogas in operating power boilers, it is necessary to reconstruct the existing burners. For a high-quality reconstruction of burners capable of providing stable and low-toxic combustion of fuel, it is important to have theoretical data on the combustion effect of combustion of combinations of organic fuels on the temperature distribution in the combustion zone and on its maximum value. In this paper, self-similar solutions of the energy equation for axisymmetric motion of a liquid (gas) in a model of a viscous incompressible medium are obtained. Basing on them, a stationary temperature field in swirling jets is constructed. A set of programs based on the ANSYS Fluent software solver has been developed for modeling and researching of thermal and gas-dynamic processes in the combustion chamber. On the basis of the k - ϵ (realizable) turbulence model, the combustion process of a swirling fuel-air mixture is simulated. The results of an analytical and numerical study of the temperature and carbon dioxide distribution in the jet are presented.


Author(s):  
Shilong Zhao ◽  
Fan Yuxin ◽  
Zhang Xiaolei

Flameholder-stabilized flames are conventional and also commonly used in propulsion and various power generation fields to maintain combustion process. The characteristics of flame expansion were obtained with various blockage ratios, which were observed to be highly sensitive to inlet conditions such as temperatures and velocities. Experiments and simulations combined methodology was performed; also the approach adopted on image processing was calculated automatically through a program written in MATLAB. It was found that the change of flame expansion angle indicated increasing fuel supply could contribute to the growth of flame expansion angle in lean premixed combustion. Besides, the influence of inlet velocity on flame expansion angle varies with different blockage ratios, i.e. under a small blockage ratio (BR = 0.1), flame expansion angle declined with the increase of velocity; however, under a larger blockage ratio (BR = 0.2 or 0.3), flame expansion angle increased firstly and then decreased with the increasing velocity. Likewise, flame expansion angle increased firstly and then decreased with the increasing temperature under BR = 0.2/0.3. In addition, flame expansion angle was almost the same for BR = 0.2 and BR = 0.3 at a higher temperature (900 K), and both of which were bigger than BR = 0.1. Overall, BR = 0.2 is the best for increasing flame expansion angle and reducing total pressure loss. The influence of velocity and temperature on flame expansion angle found from this research are vital for engineering practice and for developing a further image processing method to measure flame boundary.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Petr Buryan

In this article, we focus on causes of formation of incrustations in fluidised bed boilers that result from combustion of biomass-containing energy-producing raw materials and can significantly limit the efficiency of the respective power equipment operation. We applied laboratory procedures followed for assessment of characteristic eutectics of mixtures of coal ashes, desulphurisation components (dolomite and limestone), and woodchip ashes. Our analysis proved that combustion of these (or similar) raw materials, accompanied by repeated heating and cooling of combustion and flue gas desulphurisation products, leads to the formation of unfavourable incrustations. These incrustations can grow up to several tens of centimetres in size, thereby significantly restricting the power equipment functionality. They arise due to incrust reheating that results in the formation of eutectics, which have lower melting temperatures than that during their first pass through the combustion process. The same holds for desulphuriation components themselves. Formation of these new eutectics can be attributed both to recycling of substances produced during the first pass through the furnace as well as to mixtures formed both from recycled materials and from components initially combusted in the boiler furnace.


2018 ◽  
Vol 8 (12) ◽  
pp. 2667
Author(s):  
Antonio Mariani ◽  
Andrea Unich ◽  
Mario Minale

The paper describes a numerical study of the combustion of hydrogen enriched methane and biogases containing hydrogen in a Controlled Auto Ignition engine (CAI). A single cylinder CAI engine is modelled with Chemkin to predict engine performance, comparing the fuels in terms of indicated mean effective pressure, engine efficiency, and pollutant emissions. The effects of hydrogen and carbon dioxide on the combustion process are evaluated using the GRI-Mech 3.0 detailed radical chain reactions mechanism. A parametric study, performed by varying the temperature at the start of compression and the equivalence ratio, allows evaluating the temperature requirements for all fuels; moreover, the effect of hydrogen enrichment on the auto-ignition process is investigated. The results show that, at constant initial temperature, hydrogen promotes the ignition, which then occurs earlier, as a consequence of higher chemical reactivity. At a fixed indicated mean effective pressure, hydrogen presence shifts the operating range towards lower initial gas temperature and lower equivalence ratio and reduces NOx emissions. Such reduction, somewhat counter-intuitive if compared with similar studies on spark-ignition engines, is the result of operating the engine at lower initial gas temperatures.


2017 ◽  
Vol 37 (7) ◽  
pp. 2478-2496 ◽  
Author(s):  
Baiping Xu ◽  
Yao Liu ◽  
Liang He ◽  
Jinwei Chen ◽  
Lih-Sheng Turng

Sign in / Sign up

Export Citation Format

Share Document