Biologically active and biomimetic dual gelatin scaffolds for tissue engineering

2017 ◽  
Vol 98 ◽  
pp. 486-494 ◽  
Author(s):  
P. Sánchez ◽  
J.L. Pedraz ◽  
G. Orive
1995 ◽  
Vol 394 ◽  
Author(s):  
Jeffrey S. Hrkach ◽  
Jean Ou ◽  
Noah Lotan ◽  
Robert Langer

AbstractOne of the challenges in the field of tissue engineering is the development of optimal materials for use as scaffolds to support cell growth and tissue development. For this purpose, we are developing synthetic, biodegradable polymers with functional sites that provide the opportunity to covalently attach biologically active molecules to the polymers, so they can predictably interact with cells in a favorable manner to enhance cell attachment and growth. The preparation of poly(L-lactic acid-co-aspartic acid) comb-like graft copolymers from poly(L-lactic acid-co-β-benzyl-L-aspartate), and the casting of polymer films by solvent evaporation were carried out.


2019 ◽  
Vol 20 (20) ◽  
pp. 5105 ◽  
Author(s):  
Mario Schubert ◽  
Björn Binnewerg ◽  
Alona Voronkina ◽  
Lyubov Muzychka ◽  
Marcin Wysokowski ◽  
...  

Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics.


2018 ◽  
Vol 18 (14) ◽  
pp. 1214-1223 ◽  
Author(s):  
Ramon Rial ◽  
J.F. Armando Soltero ◽  
Pedro V. Verdes ◽  
Zhen Liu ◽  
Juan M. Ruso

Tissue engineering provides solutions that require medicine to restore damaged tissues or even complete organs. This discipline combines biologically active scaffolds, cells and molecules; being the addition of nanoparticles into the scaffolds, one of the techniques that is attracting more interest these days. In this work, Hydroxyapatite Nanorods (HA) were added to the network of Gelatin hydrogel (GE), and the particular properties resulting from their interaction were studied. Specifically, viscoelastic properties were characterized as a function of gel and nanoparticle concentration, varying ratios and temperatures. Oscillatory Time Sweeps (OTS) provided the necessary information about how the timeresolved material property/structure alteration. A wide variety of Continuous Flow Tests and Frequency Sweeps were used to describe the mechanical properties of the material, proving that the presence of nanoparticles led to a reinforcement of the gel network, mechanical stiffness and strength. The thixotropic nature of the gels was also evaluated and the most common theoretical models were described and commented. The attributes inferred from the data, showed a material that can allow the natural growth of bone tissue whilst withstanding properly the mechanical efforts; resulting in a material with an outstanding suitability to be used in regenerative medicine.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Brahatheeswaran Dhandayuthapani ◽  
Yasuhiko Yoshida ◽  
Toru Maekawa ◽  
D. Sakthi Kumar

Current strategies of regenerative medicine are focused on the restoration of pathologically altered tissue architectures by transplantation of cells in combination with supportive scaffolds and biomolecules. In recent years, considerable interest has been given to biologically active scaffolds which are based on similar analogs of the extracellular matrix that have induced synthesis of tissues and organs. To restore function or regenerate tissue, a scaffold is necessary that will act as a temporary matrix for cell proliferation and extracellular matrix deposition, with subsequent ingrowth until the tissues are totally restored or regenerated. Scaffolds have been used for tissue engineering such as bone, cartilage, ligament, skin, vascular tissues, neural tissues, and skeletal muscle and as vehicle for the controlled delivery of drugs, proteins, and DNA. Various technologies come together to construct porous scaffolds to regenerate the tissues/organs and also for controlled and targeted release of bioactive agents in tissue engineering applications. In this paper, an overview of the different types of scaffolds with their material properties is discussed. The fabrication technologies for tissue engineering scaffolds, including the basic and conventional techniques to the more recent ones, are tabulated.


2020 ◽  
Vol 24 (4) ◽  
pp. 114
Author(s):  
V. V. Sevostianova ◽  
A. V. Mironov ◽  
L. V. Antonova ◽  
E. O. Krivkina ◽  
V. G. Matveeva ◽  
...  

<p><strong>Background.</strong> Commercially available synthetic and animal-derived vascular patches used in patch angioplasty during carotid endarterectomy have several disadvantages, such as postoperative thrombosis or occlusion and restenosis. This problem may be resolved by the development of biologically active materials that are biodegradable and can stimulate tissue regeneration.<br />Aim. To evaluate the properties and efficacy of a biodegradable patch based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) into which vascular endothelial growth factor (VEGF) is incorporated, in comparison with unmodified PHBV/PCL and commercial vascular patches.</p><p><strong>Methods.</strong> Porous patches were fabricated by emulsion electrospinning from a mixture of PHBV and PCL, into which VEGF was incorporated. The morphological and mechanical properties of these patches were tested, and they were implanted into the wall of rat abdominal aortas for 1, 3, 6 and 12 months. Histological and immunofluorescence examinations were performed to evaluate endothelisation, cellular composition and calcification.</p><p><strong>Results.</strong> PHBV / PCL patches with VEGF had a highly porous structure and demonstrated tensile strength similar to that of the aorta in rats and the internal thoracic artery in humans. After 3 months of implantation, an endothelial monolayer was formed on the inner surface of these patches. The patches were populated by cells that secreted the extracellular matrix faster than did cells of patches from the xenopericardium. Remodelling with PHBV / PCL patches was not accompanied by chronic inflammation; in contrast, inflammation was observed with long-term implantation of unmodified PHBV / PCL samples.</p><p><strong>Conclusion.</strong> VEGF incorporated into biodegradable PHBV / PCL patches stimulated their endothelisation, increased their biocompatibility and promoted remodelling and formation of the components of the blood vessel. PHBV / PCL / VEGF patches thus have a high potential for use in tissue engineering of the vascular wall.</p><p>Received 2 June 2020. Revised 27 June 2020. Accepted 16 July 2020.</p><p><strong>Funding:</strong> This study was supported by the Complex Program of Basic Research under the Siberian Branch of the Russian Academy of Sciences within the Basic Research Topic of Research Institute for Complex Issues of Cardiovascular Diseases № 0546-2019-0002 “Pathogenetic basis for the development of cardiovascular implants from biocompatible materials using patient-oriented approach, mathematical modeling, tissue engineering, and genomic predictors”.</p><p><strong>Conflict of interest:</strong> Authors declare no conflict of interest.</p><p><strong>Author contributions</strong><br />Conception and study design: V.V. Sevostianova, A.V. Mironov, L.V. Antonova, R.S. Tarasov, L.S. Barbarash<br />Data collection and analysis: V.V. Sevostianova, A.V. Mironov, L.V. Antonova, E.O. Krivkina, V.G. Matveeva, E.A. Velikanova, T.V. Glushkova<br />Statistical analysis: V.V. Sevostianova, T.V. Glushkova<br />Drafting the article: V.V. Sevostianova, A.V. Mironov <br />Critical revision of the article: L.V. Antonova, R.S. Tarasov, L.S. Barbarash<br />Final approval of the version to be published: V.V. Sevostianova, A.V. Mironov, L.V. Antonova, E.O. Krivkina, V.G. Matveeva, E.A. Velikanova, R.S. Tarasov, T.V. Glushkova, L.S. Barbarash</p>


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Gerardo Asensio ◽  
Lorena Benito-Garzón ◽  
Rosa Ana Ramírez-Jiménez ◽  
Yasmina Guadilla ◽  
Julian Gonzalez-Rubio ◽  
...  

Regenerative therapies based on tissue engineering are becoming the most promising alternative for the treatment of osteoarthritis and rheumatoid arthritis. However, regeneration of full-thickness articular osteochondral defects that reproduces the complexity of native cartilage and osteochondral interface still remains challenging. Hence, in this work, we present the fabrication, physic-chemical characterization, and in vitro and in vivo evaluation of biomimetic hierarchical scaffolds that mimic both the spatial organization and composition of cartilage and the osteochondral interface. The scaffold is composed of a composite porous support obtained by cryopolymerization of poly(ethylene glycol) dimethacrylate (PEGDMA) in the presence of biodegradable poly(D,L-lactide-co-glycolide) (PLGA), bioactive tricalcium phosphate β-TCP and the bone promoting strontium folate (SrFO), with a gradient biomimetic photo-polymerized methacrylated hyaluronic acid (HAMA) based hydrogel containing the bioactive zinc folic acid derivative (ZnFO). Microscopical analysis of hierarchical scaffolds showed an open interconnected porous open microstructure and the in vitro behaviour results indicated high swelling capacity with a sustained degradation rate. In vitro release studies during 3 weeks indicated the sustained leaching of bioactive compounds, i.e., Sr2+, Zn2+ and folic acid, within a biologically active range without negative effects on human osteoblast cells (hOBs) and human articular cartilage cells (hACs) cultures. In vitro co-cultures of hOBs and hACs revealed guided cell colonization and proliferation according to the matrix microstructure and composition. In vivo rabbit-condyle experiments in a critical-sized defect model showed the ability of the biomimetic scaffold to promote the regeneration of cartilage-like tissue over the scaffold and neoformation of osteochondral tissue.


Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 484 ◽  
Author(s):  
Xiaowei Zhang ◽  
Gyeong Kim ◽  
Min Kang ◽  
Jung Lee ◽  
Jeong Seo ◽  
...  

Biologically active materials from marine sources have been receiving increasing attention as they are free from the transmissible diseases and religious restrictions associated with the use of mammalian resources. Among various other biomaterials from marine sources, alginate and fish gelatin (f-gelatin), with their inherent bioactivity and physicochemical tunability, have been studied extensively and applied in various biomedical fields such as regenerative medicine, tissue engineering, and pharmaceutical products. In this study, by using alginate and f-gelatin’s chemical derivatives, we developed a marine-based interpenetrating polymer network (IPN) hydrogel consisting of alginate and f-gelatin methacryloyl (f-GelMA) networks via physical and chemical crosslinking methods, respectively. We then evaluated their physical properties (mechanical strength, swelling degree, and degradation rate) and cell behavior in hydrogels. Our results showed that the alginate/f-GelMA hydrogel displayed unique physical properties compared to when alginate and f-GelMA were used separately. These properties included high mechanical strength, low swelling and degradation rate, and an increase in cell adhesive ability. Moreover, for the first time, we introduced and optimized the application of alginate/f-GelMA hydrogel in a three-dimensional (3D) bioprinting system with high cell viability, which breaks the restriction of their utilization in tissue engineering applications and suggests that alginate/f-GelMA can be utilized as a novel bioink to broaden the uses of marine products in biomedical fields.


2008 ◽  
Vol 377 ◽  
pp. 151-166 ◽  
Author(s):  
Larry L. Hench ◽  
Julia M. Polak

Historically the function of biomaterials has been to replace diseased, damaged and aged tissues. First generation biomaterials, including bio ceramics, were selected to be as inert as possible in order to minimize the thickness of interfacial scar tissue. Bioactive glasses provided an alternative from the 1970’s onward; second generation bioactive bonding of implants with tissues and no interfacial scar tissue. This chapter reviews the discovery that controlled release of biologically active Ca and Si ions from bioactive glasses leads to the up-regulation and activation of seven families of genes in osteoprogenitor cells that give rise to rapid bone regeneration. This finding offers the possibility of creating a new generation of gene activating bioceramics designed specially for tissue engineering and in situ regeneration of tissues.


2014 ◽  
Vol 42 (3) ◽  
pp. 703-709 ◽  
Author(s):  
Bethanie I. Ayerst ◽  
Anthony J. Day ◽  
Victor Nurcombe ◽  
Simon M. Cool ◽  
Catherine L.R. Merry

Most research strategies for cartilage tissue engineering use extended culture with complex media loaded with costly GFs (growth factors) to drive tissue assembly and yet they result in the production of cartilage with inferior mechanical and structural properties compared with the natural tissue. Recent evidence suggests that GAGs (glycosaminoglycans) incorporated into tissue engineering scaffolds can sequester and/or activate GFs and thereby more effectively mimic the natural ECM (extracellular matrix). Such approaches may have potential for the improvement of cartilage engineering. However, natural GAGs are structurally complex and heterogeneous, making structure–function relationships hard to determine and clinical translation difficult. Importantly, subfractions of GAGs with specific chain lengths and sulfation patterns have been shown to activate key signalling processes during stem cell differentiation. In addition, recently, GAGs have been bound to synthetic biomaterials, such as electrospun scaffolds and hydrogels, in biologically active conformations, and methods to purify and select affinity-matched GAGs for specific GFs have also been developed. The identification and use of specific GAG moieties to promote chondrogenesis is therefore an exciting new avenue of research. Combining these with synthetic biomaterials may allow a more effective mimicry of the natural ECM, reduction in the need for expensive GFs, and perhaps the deposition of an articular cartilage-like matrix in a clinically relevant manner.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Marco Mravic ◽  
Bruno Péault ◽  
Aaron W. James

The development of tissue engineering and regeneration constitutes a new platform for translational medical research. Effective therapies for bone engineering typically employ the coordinated manipulation of cells, biologically active signaling molecules, and biomimetic, biodegradable scaffolds. Bone tissue engineering has become increasingly dependent on the merging of innovations from each of these fields, as they continue to evolve independently. This foreword will highlight some of the most recent advances in bone tissue engineering and regeneration, emphasizing the interconnected fields of stem cell biology, cell signaling biology, and biomaterial research. These include, for example, novel methods for mesenchymal stem cell purification, new methods of Wnt signaling pathway manipulation, and cutting edge computer assisted nanoscale design of bone scaffold materials. In the following special issue, we sought to incorporate these diverse areas of emphasis in order to reflect current trends in the field.


Sign in / Sign up

Export Citation Format

Share Document