The role of probiotic Lactobacillus acidophilus ATCC 4356 bacteriocin on effect of HBsu on planktonic cells and biofilm formation of Bacillus subtilis

2018 ◽  
Vol 115 ◽  
pp. 762-766 ◽  
Author(s):  
Maliheh Sarikhani ◽  
Rouha Kasra Kermanshahi ◽  
Parinaz Ghadam ◽  
Sara Gharavi
Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 774
Author(s):  
Virginio Cepas ◽  
Victoria Ballén ◽  
Yaiza Gabasa ◽  
Miriam Ramírez ◽  
Yuly López ◽  
...  

Current Escherichia coli antibiofilm treatments comprise a combination of antibiotics commonly used against planktonic cells, leading to treatment failure. A better understanding of the genes involved in biofilm formation could facilitate the development of efficient and specific new antibiofilm treatments. A total of 2578 E. coli mutants were generated by transposon insertion, of which 536 were analysed in this study. After sequencing, Tn263 mutant, classified as low biofilm-former (LF) compared to the wild-type (wt) strain (ATCC 25922), showed an interruption in the purL gene, involved in the de novo purine biosynthesis pathway. To elucidate the role of purL in biofilm formation, a knockout was generated showing reduced production of curli fibres, leading to an impaired biofilm formation. These conditions were restored by complementation of the strain or addition of exogenous inosine. Proteomic and transcriptional analyses were performed to characterise the differences caused by purL alterations. Thirteen proteins were altered compared to wt. The corresponding genes were analysed by qRT-PCR not only in the Tn263 and wt, but also in clinical strains with different biofilm activity. Overall, this study suggests that purL is essential for biofilm formation in E. coli and can be considered as a potential antibiofilm target.


2005 ◽  
Vol 73 (6) ◽  
pp. 3773-3777 ◽  
Author(s):  
Céline M. Lévesque ◽  
Elena Voronejskaia ◽  
Yi-Chen Cathy Huang ◽  
Richard W. Mair ◽  
Richard P. Ellen ◽  
...  

ABSTRACT Streptococcus mutans is one of the best-known biofilm-forming organisms associated with humans. We investigated the role of the sortase gene (srtA) in monospecies biofilm formation and observed that inactivation of srtA caused a decrease in biofilm formation. Genes encoding three putative sortase-dependent proteins were also found to be up-regulated in biofilms versus planktonic cells and mutations in these genes resulted in reduced biofilm biomass.


2015 ◽  
Vol 197 (21) ◽  
pp. 3421-3432 ◽  
Author(s):  
Tantan Gao ◽  
Jennifer Greenwich ◽  
Yan Li ◽  
Qi Wang ◽  
Yunrong Chai

ABSTRACTInBacillus subtilis, biosynthesis of exopolysaccharide (EPS), a key biofilm matrix component, is regulated at the posttranslational level by the bacterial tyrosine kinase (BY-kinase) EpsB. EpsB, in turn, relies on the cognate kinase activator EpsA for activation. A concerted role of a second BY-kinase–kinase activator pair, PtkA and TkmA, respectively in biofilm formation was also indicated in previous studies. However, the exact functions of PtkA and TkmA in biofilm formation remain unclear. In this work, we show that the kinase activator TkmA contributes to biofilm formation largely independently of the cognate kinase, PtkA. We further show that the biofilm defect caused by a ΔtkmAmutation can be rescued by complementation byepsA, suggesting a functional overlap between TkmA and EpsA and providing a possible explanation for the role of TkmA in biofilm formation. We also show that the importance of TkmA in biofilm formation depends largely on medium conditions; the biofilm defect of ΔtkmAis very severe in the biofilm medium LBGM (lysogenic broth [LB] supplemented with 1% [vol/vol] glycerol and 100 μM MnSO4) but marginal in another commonly used biofilm medium, MSgg (5 mM potassium phosphate [pH 7.0], MOPS [100 mM morpholinepropanesulfonic acid] [pH 7.0], 2 mM MgCl2, 700 μM CaCl2, 50 μM MnCl2, 50 μM FeCl3, 1 μM ZnCl2, 2 μM thiamine, 0.5% glycerol, 0.5% glutamic acid, 50 μg/ml tryptophan, 50 μg/ml threonine, and 50 μg/ml phenylalanine). The molecular basis for the medium dependence is likely due to differential expression oftkmAandepsAin the two different media and complex regulation of these genes by both Spo0A and DegU. Our studies provide genetic evidence for possible cross talk between a BY-kinase activator (TkmA) and a noncognate kinase (EpsB) and an example of how environmental conditions may influence such cross talk in regulating biofilm formation inB. subtilis.IMPORTANCEIn bacteria, biosynthesis of secreted polysaccharides is often regulated by bacterial tyrosine kinases (BY-kinases). BY-kinases, in turn, rely on cognate kinase activators for activation. In this study, we investigated the role of a BY-kinase activator in biofilm formation inBacillus subtilis. We present evidence that different BY-kinase activators may functionally overlap each other, as well as an example of how activities of the BY-kinase activators may be highly dependent on environmental conditions. Our study broadens the understanding of the complexity of regulation of the BY-kinases/kinase activators and the influence on bacterial cell physiology.


2013 ◽  
Vol 8 (3) ◽  
pp. 259-262 ◽  
Author(s):  
Helena Bujdáková ◽  
Miroslava Didiášová ◽  
Hana Drahovská ◽  
Lucia Černáková

AbstractOverall cell surface hydrophobicity (CSH) is predicted to play an important role during biofilm formation in Candida albicans but is the result of many expressed proteins. This study compares the CSH status and CSH1 gene expression in C. albicans planktonic cells, sessile biofilm, and dispersal cells. Greater percentages of hydrophobic cells were found in non-adhered (1.5 h) and dispersal forms (24 or 48 h) (41.34±4.17% and 39.52±7.45%, respectively), compared with overnight planktonic cultures (21.69±3.60%). Results from quantitative real-time PCR confirmed greater up-regulation of the CSH1 gene in sessile biofilm compared with both planktonic culture and dispersal cells. Up-regulation was also greater in dispersal cells compared with planktonic culture. The markedly increased CSH found both in C. albicans biofilm, and in cells released during biofilm formation could provide an advantage to dispersing cells building new biofilm.


2011 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Frank Schreiber ◽  
Martin Beutler ◽  
Dennis Enning ◽  
María Lamprecht-Grandio ◽  
Olga Zafra ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 5001
Author(s):  
Lijuan Zhong ◽  
Yibo Song ◽  
Shufeng Zhou

Stainless steel is one of most commonly used materials in the world; however, biofilms on the surfaces of stainless steel cause many serious problems. In order to find effective methods of reducing bacterial adhesion to stainless steel, and to investigate the role of electrostatic effects during the formation of biofilms, this study used a stainless steel surface that was negatively charged by being coated with Nafion which was terminated by sulfonic groups. The results showed that the roughness of stainless steel discs coated with 1% Nafion was similar to an uncoated surface; however the hydrophobicity increased, and the Nafion-coated surface reduced the adhesion of Bacillus subtilis by 75% compared with uncoated surfaces. Therefore, a facile way to acquire antibacterial stainless steel was found, and it is proved that electrostatic effects have a significant influence on the formation of biofilms.


2010 ◽  
Vol 78 (8) ◽  
pp. 3560-3569 ◽  
Author(s):  
Rita Tamayo ◽  
Bharathi Patimalla ◽  
Andrew Camilli

ABSTRACT Biofilm formation plays a multifaceted role in the life cycles of a wide variety of microorganisms. In the case of pathogenic Vibrio cholerae, biofilm formation in its native aquatic habitats is thought to aid in persistence during interepidemic seasons and to enhance infectivity upon oral ingestion. The structure of V. cholerae biofilms has been hypothesized to protect the bacteria during passage through the stomach. Here, we directly test the role of biofilm architecture in the infectivity of V. cholerae by comparing the abilities of intact biofilms, dispersed biofilms, and planktonic cells to colonize the mouse small intestine. Not only were V. cholerae biofilms better able to colonize than planktonic cells, but the structure of the biofilm was also found to be dispensable: intact and dispersed biofilms colonized equally, and both vastly out-colonized planktonic cells. The infectious dose for biofilm-derived V. cholerae was orders of magnitude lower than that of planktonic cells. This biofilm-induced hyperinfectivity may be due in part to a higher growth rate of biofilm-derived cells during infection. These results suggest that the infectious dose of naturally occurring biofilms of V. cholerae may be much lower than previously estimated using cells grown planktonically in vitro. Furthermore, this work implies the existence of factors specifically induced during growth in a biofilm that augment infection by V. cholerae.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 817
Author(s):  
Abebe Mekuria Shenkutie ◽  
Mian Zhi Yao ◽  
Gilman Kit-hang Siu ◽  
Barry Kin Chung Wong ◽  
Polly Hang-mei Leung

In order to understand the role of biofilm in the emergence of antibiotic resistance, a total of 104 clinical Acinetobacter baumannii strains were investigated for their biofilm-forming capacities and genes associated with biofilm formation. Selected biofilm-formers were tested for antibiotic susceptibilities when grown in biofilm phase. Reversibility of antibiotic susceptibility in planktonic cells regrown from biofilm were investigated. We found 59.6% of the strains were biofilm-formers, among which, 66.1% were non-multidrug resistant (MDR) strains. Presence of virulence genes bap, csuE, and abaI was significantly associated with biofilm-forming capacities. When strains were grown in biofilm state, the minimum biofilm eradication concentrations were 44, 407, and 364 times higher than the minimum bactericidal concentrations (MBC) for colistin, ciprofloxacin, and imipenem, respectively. Persisters were detected after treating the biofilm at 32–256 times the MBC of planktonic cells. Reversibility test for antibiotic susceptibility showed that biofilm formation induced reversible antibiotic tolerance in the non-MDR strains but a higher level of irreversible resistance in the extensively drug-resistant (XDR) strain. In summary, we showed that the non-MDR strains were strong biofilm-formers. Presence of persisters in biofilm contributed to the reduced antibiotic susceptibilities. Biofilm-grown Acinetobacter baumannii has induced antibiotic tolerance in non-MDR strains and increased resistance levels in XDR strains. To address the regulatory mechanisms of biofilm-specific resistance, thorough investigations at genome and transcription levels are warranted.


2004 ◽  
Vol 186 (9) ◽  
pp. 2781-2788 ◽  
Author(s):  
Ingo Schmidt ◽  
Peter J. M. Steenbakkers ◽  
Huub J. M. op den Camp ◽  
Katrin Schmidt ◽  
Mike S. M. Jetten

ABSTRACT NO, a free radical gas, is the signal for Nitrosomonas europaea cells to switch between different growth modes. At an NO concentration of more than 30 ppm, biofilm formation by N. europaea was induced. NO concentrations below 5 ppm led to a reversal of the biofilm formation, and the numbers of motile and planktonic (motile-planktonic) cells increased. In a proteomics approach, the proteins expressed by N. europaea were identified. Comparison studies of the protein patterns of motile-planktonic and attached (biofilm) cells revealed several clear differences. Eleven proteins were found to be up or down regulated. Concentrations of other compounds such as ammonium, nitrite, and oxygen as well as different temperatures and pH values had no significant effect on the growth mode of and the proteins expressed by N. europaea.


Sign in / Sign up

Export Citation Format

Share Document