scholarly journals The dermato-protective effects of lucidone from Lindera erythrocarpa through the induction of Nrf2-mediated antioxidant genes in UVA-irradiated human skin keratinocytes

2015 ◽  
Vol 12 ◽  
pp. 303-318 ◽  
Author(s):  
You-Cheng Hseu ◽  
Yu-Cheng Tsai ◽  
Pei-Jane Huang ◽  
Ting-Tsz Ou ◽  
Mallikarjuna Korivi ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
You-Cheng Hseu ◽  
Yugandhar Vudhya Gowrisankar ◽  
Xuan-Zao Chen ◽  
Yi-Chen Yang ◽  
Hsin-Ling Yang

UVA irradiation induced ROS-mediated photo damage to the human skin leading to coarseness, wrinkling, pigmentation, and cutaneous malignancies. We investigated the dermatoprotective efficacies of submicromolar concentrations of ergothioneine (EGT, 0.125-0.5 μM), which occurs naturally as a sulfur-containing amino acid, in the mechanisms in human skin fibroblast (HSF) cells. UVA-induced AP-1 (c-Fos and c-Jun) translocation was found to be inhibited by EGT treatments with the parallel inhibition of the collagenolytic matrix metalloproteinase- (MMP-) 1 activation and type I procollagen degradation. Moreover, EGT mitigated UVA-induced ROS generation. An increase in the amount of antioxidant genes (HO-1, NQO-1, and γ-GCLC) from EGT and were associated with upregulated Nrf2 expressions in a dose-dependent or time-dependent manner. We confirmed this from Nrf2 translocation and increased nuclear ARE promoter activity that underlie EGT dermatoprotective activities. Also, glutathione (GSH) levels (from γ-GCLC) were significantly increased. Moreover, we showed that mediated by ERK, JNK, and PKC, signaling cascades mediate Nrf2 translocation. We confirmed this phenomenon by the suppressed nuclear Nrf2 activation in cells that were treated with respective inhibitors (PD98059, SP600125, and GF109203X). However, antioxidant protein expressions were impaired in Nrf2 knockdown cells to confirm that ARE/Nrf2 pathways and the inhibition of AP-1 had significant roles in EGT-mediated protective effects. We can conclude that ergothioneine ameliorated UVA-induced skin aging and is a useful food supplement for skin care products.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1038
Author(s):  
Patrícia Correia ◽  
Paula Araújo ◽  
Carolina Ribeiro ◽  
Hélder Oliveira ◽  
Ana Rita Pereira ◽  
...  

Human skin is commonly described as a particularly dynamic and complex environment, with a physiological balance continuously orchestrated by numerous internal and external factors. Intrinsic aging, exposure to UV radiation and skin pathogens are some of the key players that account for dermatological alterations and ailments. In this regard, this study intended to explore the potential skin-health beneficial properties of a group of molecules belonging to the anthocyanin family: cyanidin- and malvidin-3-O-glucosides and some of their structurally related pigments, resulting in a library of compounds with different structural properties and color hues. The inclusion of both purified compounds and crude extracts provided some insights into their distinctive effects when tested as individual agents or as part of multicomponent mixtures. Overall, most of the compounds were found to reduce biofilm production by S. aureus and P. aeruginosa reference strains, exhibit UV-filter capacity, attenuate the production of reactive oxygen species in human skin keratinocytes and fibroblasts and also showed inhibitory activity of skin-degrading enzymes, in the absence of cytotoxic effects. Carboxypyranocyanidin-3-O-glucoside stood out for its global performance which, combined with its greater structural stability, makes this a particular interesting compound for potential incorporation in topical formulations. Results provide strong evidence of the skin protective effects of these pigments, supporting their further application for cosmeceutical purposes.


2021 ◽  
Vol 21 (9) ◽  
pp. 4579-4585
Author(s):  
Yasukazu Saitoh ◽  
Asuka Tanaka ◽  
Sayuri Hyodo

Excess ultraviolet (UV) exposure accelerates skin inflammation, melanogenesis, wrinkle formation, photoaging, and carcinogenesis through oxidative stress and deoxyribonucleic acid damage. These deleterious effects to skin are closely associated with UV-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced via nitric oxide (NO·) generation. RNS are known to be responsible for various skin disorders, such as erythema, melanin production, reduced barrier function, and psoriasis. These skin disorders are major cosmetic problems; RNS control, in addition to ROS control, is important for maintaining healthy skin. In the present study, we investigated the cytoprotective effects of polyvinylpyrrolidone-entrapped fullerene (C60/PVP), a water-soluble ROS scavenger, against nitric oxide (NO·) and peroxynitrite (ONOO-)-induced human keratinocyte injuries. Protective effects of C60/PVP on NO·/ONOO--induced cellular damage and intracellular ONOO- generation were evaluated using a NO· donor S-nitroso-N-acetylpenicillamine (SNAP) in human skin epidermal HaCaT keratinocytes. Furthermore, the suppressive effect of C60/PVP on UVB-induced generation of intracellular ONOO- levels was also investigated. C60/PVP exerted suppressive effects on intracellular increases in NO·-induced ONOO- generation and subsequent cellular damage. Additionally, C60/PVP significantly decreased the UVB-induced generation of intracellular ONOO- levels. These findings suggest that C60/PVP could be useful as a cosmetics ingredient for prevention of skin injuries and/or dysfunction from NO·/ONOO--induced effects in human skin keratinocytes.


Author(s):  
Ok Kyung Kim ◽  
Da-Eun Nam ◽  
Min-Jae Lee ◽  
Namgil Kang ◽  
Jae-Youn Lim ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yunkyoung Lee ◽  
Hee-Sook Jun ◽  
Yoon Sin Oh

The extract of Psoralea corylifolia seeds (PCE) has been widely used as a herbal medicine because of its beneficial effect on human health. In this study, we investigated the protective effects and molecular mechanisms of PCE on palmitate- (PA-) induced toxicity in PC12 cells, a neuron-like cell line. PCE significantly increased cell viability in PA-treated PC12 cells and showed antiapoptotic effects, as evidenced by decreased expression of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase, and bax protein as well as increased expression of bcl-2 protein. In addition, PCE treatment reduced PA-induced reactive oxygen species production and upregulated mRNA levels of antioxidant genes such as nuclear factor (erythroid-derived 2)-like 2 and heme oxygenase 1. Moreover, PCE treatment recovered the expression of autophagy marker genes such as beclin-1 and p62, which was decreased by PA treatment. Treatment with isopsoralen, one of the major components of PCE extract, also recovered the expression of autophagy marker genes and reduced PA-induced apoptosis. In conclusion, PCE exerts protective effects against lipotoxicity via its antioxidant function, and this effect is mediated by activation of autophagy. PCE might be a potential pharmacological agent to protect against neuronal cell injury caused by oxidative stress or lipotoxicity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yueqin Qiu ◽  
Jun Yang ◽  
Li Wang ◽  
Xuefen Yang ◽  
Kaiguo Gao ◽  
...  

Abstract Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.


Sign in / Sign up

Export Citation Format

Share Document