Effect of friction hardening on the surface mechanical properties and tribological behavior of biocompatible Ti-6Al-4V alloy

2018 ◽  
Vol 31 ◽  
pp. 776-786 ◽  
Author(s):  
F. Shahriyari ◽  
R. Taghiabadi ◽  
A. Razaghian ◽  
M. Mahmoudi
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Alexander Mironov ◽  
Iosif Gershman ◽  
Eugeniy Gershman ◽  
Pavel Podrabinnik ◽  
Ekaterina Kuznetsova ◽  
...  

Potential relations of tribological characteristics of aluminum antifriction alloys with their compositions and mechanical properties were investigated. In this regard, the properties of eight aluminum alloys containing tin from 5.4% to 11% doped with lead, copper, silicon, zinc, magnesium, and titanium were studied. Mechanical properties such as hardness, strength, relative extension, and impact strength were analyzed. Within the tribological tests seizure load and wear of material were evaluated and secondary structures were studied afterwards. The absence of a definitive correlation between tribological behavior and mechanical properties was shown. It was determined that doping tin over 6% is excessive. The seizure load of the alloys increases with the magnesium content. Secondary structures of the alloys with higher wear rates contain one order less magnesium and tin.


2007 ◽  
Vol 26-28 ◽  
pp. 715-718
Author(s):  
Bong Hwan Kim ◽  
Sang Mok Lee

Al-Cu-Fe-B quasicrystalline and Mo coatings were obtained on the mild steel and brass substrates by thermal spraying routes for the purpose of replacement of Mo coatings with quasicrystalline ones. Quasicrystalline coatings were prepared by air plasma spraying and/or HVOF (High Velocity Oxygen Fuel) techniques followed by subsequent heat treatment, and Mo coatings, wire flame spraying. For comparative studies of important properties for industrial application, mechanical properties, bonding strength, surface energy, and tribological behavior were investigated based on microstructural characterization. Basic mechanical properties such as hardness, fracture toughness, and elastic modulus of quasicrystalline coating showed comparable values with those of Mo coatings. De-bonding tests of coatings deposited onto brass substrate indicated that the bonding strength of quasicrystalline coatings obtained by HVOF techniques exhibit higher value to Mo coatings. Non-sticking property analogized from surface energy calculation and friction coefficient of quasicrystalline coatings also showed better performance during the tests. It is suggested from this investigation that the quasicrystalline coating can be effectively used as a replacement of the Mo coating, which has shown a recent steep price rise and problems of accidental existence of minor environment harmful elements such as Cr6+, Pb, Cd, and Hg.


2019 ◽  
Vol 16 (31) ◽  
pp. 860-874
Author(s):  
Jacson Malcher NASCIMENTO ◽  
Regiane Socorro BARROS ◽  
Camila Yuri KONNO ◽  
Adrina Paixão SILVA ◽  
Otávio ROCHA ◽  
...  

In general, the binary monotectic alloys are characterized by the limited solubility in the liquid state, which gives them a benefited tribological behavior such as wear resistance. Researches regarding the development of monotectic alloy microstructures during the unsteady-state heat flow conditions are fundamental, as it encompasses most of the solidification industrial processes. However, the microstructural relationship between the mechanical properties of monotectic alloys is little explored and practically nil. In this context, the present study consists of investigating and correlating solidification thermal variables and structural parameters such as microhardness and machinability (cutting temperatures and tool wear) of Al-1.2wt% Pb alloy, in a horizontal directional device. It was observed that the cutting temperature and tool wear results complement each other when correlated with position and interphase spacing, indicating that for smaller interphase spacings the addition of lead harms machinability.


2014 ◽  
Vol 11 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Igor Danilenko ◽  
Serhii Prokhorenko ◽  
Tetyana Konstantinova ◽  
Leonid Ahkozov ◽  
Valerii Burkhovetski ◽  
...  

The use of ceramic instead of metallic parts in devices that operate in aggressive conditions increases the service life of machines and equipment for chemical, metallurgical and other industries. The wear resistant zirconia/alumina composites were sintered from nanopowders obtained by co-precipitation technique. In the case of addition of 1wt% of alumina in zirconia ceramics the wear resistance increased by approximately 30%.The formation of complex multilevel composite structures, such as Al3+ ion segregation on zirconia grain boundaries and intracrystalline alumina inclusions in zirconia grains, increased the fracture toughness values of composites obtained from co-precipitated nanopowders and consequently decreased the volume loss of ceramic material.In this study, we investigated the effect of nanopowders synthesis methods and alumina concentration on composite structure, fracture toughness and tribological behavior of 3Y-TZP/alumina ceramic composites and searched correlation between structures and mechanical properties.


Vacuum ◽  
2020 ◽  
Vol 179 ◽  
pp. 109518 ◽  
Author(s):  
Changhong Cai ◽  
Renbo Song ◽  
Shiguang Peng ◽  
Yongjin Wang ◽  
Jingyuan Li

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Elizabeth Feeney ◽  
Devis Galesso ◽  
Cynthia Secchieri ◽  
Francesca Oliviero ◽  
Roberta Ramonda ◽  
...  

Abstract Inferior synovial lubrication is a hallmark of osteoarthritis (OA), and synovial fluid (SF) lubrication and composition are variable among OA patients. Hyaluronic acid (HA) viscosupplementation is a widely used therapy for improving SF viscoelasticity and lubrication, but it is unclear how the effectiveness of HA viscosupplements varies with arthritic endotype. The objective of this study was to investigate the effects of the HA viscosupplement, Hymovis®, on the lubricating properties of diseased SF from patients with noninflammatory OA and inflammatory arthritis (IA). The composition (cytokine, HA, and lubricin concentrations) of the SF was measured as well as the mechanical properties (rheology, tribology) of the SF alone and in a 1:1 mixture with the HA viscosupplement. Using rotational rheometry, no difference in SF viscosity was detected between disease types, and the addition of HA significantly increased all fluids' viscosities. In noninflammatory OA SF, friction coefficients followed a typical Stribeck pattern, and their magnitude was decreased by the addition of HA. While some of the IA SF also showed typical Stribeck behavior, a subset showed more erratic behavior with highly variable and larger friction coefficients. Interestingly, this aberrant behavior was not eliminated by the addition of HA, and it was associated with low concentrations of lubricin. Aberrant SF exhibited significantly lower effective viscosities compared to noninflammatory OA and IA SF with typical tribological behavior. Collectively, these results suggest that different endotypes of arthritis exist with respect to lubrication, which may impact the effectiveness of HA viscosupplements in reducing friction.


Author(s):  
Masanori Iwaki ◽  
Thierry Le Mogne ◽  
Julien Fontaine ◽  
Jean-Michel Martin

Among diamond-like carbon (DLC) coatings, hydrogenated amorphous carbon (a-C:H) coatings are of great interest since some of them may exhibit coefficients of friction in the millirange, so-called “superlow friction” in ultrahigh vacuum. However, there are still many points to be clarified and improved to employ them as solid lubricant for actual vacuum applications. For example, in space environment solid lubricants are required to function at both low and high temperature ranging from −150 to 100°C. To apply them as solid lubricant in such an extreme environment, it is necessary to know the evolution of the tribological behavior in temperature, leading to their application limit. Furthermore, tribological behavior of a-C:H coatings is known to depend on tribochemistry and on mechanical properties like viscoplasticity. Since both could be affected by temperature, a better understanding of superlow friction mechanisms is expected from experiments at various temperatures. In this present work, pin-on-disk reciprocating friction tests were conducted at various temperature conditions ranging from −130 to 300°C under ultrahigh vacuum (10−7Pa) to study the effect of temperature on the coefficient of friction of an a C:H coated flat mated against steel (AISI 52100) pins. For all temperatures, superlow friction regime could be reached, as it was observed usually at room temperature for this sample. However, an effect of temperature is evidenced on the duration of “running-in” phase, i.e. the number of cycles required to reach a superlow friction regime. The duration becomes shorter at higher temperatures and longer at lower temperatures. Also, the application limit in temperature is found between 200 and 300°C, at which the friction coefficient slowly increases after running-in, to reach values above 0.01. In light of these results, the mechanisms of superlow friction are discussed in terms of tribochemistry and mechanical properties of the coating.


Sign in / Sign up

Export Citation Format

Share Document