scholarly journals Tensile properties of multi-material interfaces in 3D printed parts

2019 ◽  
Vol 162 ◽  
pp. 1-9 ◽  
Author(s):  
Thomas S. Lumpe ◽  
Jochen Mueller ◽  
Kristina Shea
2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Prisca Aude Eutionnat-Diffo ◽  
Yan Chen ◽  
Jinping Guan ◽  
Aurelie Cayla ◽  
Christine Campagne ◽  
...  

Abstract Although direct deposition of polymeric materials onto textiles through 3D printing is a great technique used more and more to develop smart textiles, one of the main challenges is to demonstrate equal or better mechanical resistance, durability and comfort than those of the textile substrates before deposition process. This article focuses on studying the impact of the textile properties and printing platform temperature on the tensile and deformations of non-conductive and conductive poly lactic acid (PLA) filaments deposited onto polyethylene terephthalate (PET) textiles through 3D printing process and optimizing them using theoretical and statistical models. The results demonstrate that the deposition process affects the tensile properties of the printed textile in comparison with the ones of the textiles. The stress and strain at rupture of the first 3D printed PLA layer deposited onto PET textile material reveal to be a combination of those of the printed layer and the PET fabric due to the lower flexibility and diffusion of the polymeric printed track through the textile fabric leading to a weak adhesion at the polymer/textile interface. Besides, printing platform temperature and textile properties influence the tensile and deformation properties of the 3D printed PLA on PET textile significantly. Both, the washing process and the incorporation of conductive fillers into the PLA do not affect the tensile properties of the extruded polymeric materials. The elastic, total and permanent deformations of the 3D-printed PLA on PET fabrics are lower than the ones of the fabric before polymer deposition which demonstrates a better dimensional stability, higher stiffness and lower flexibility of these materials.


Author(s):  
MacArthur L Stewart

This paper defines the tensile properties of a successfully worn 3D-printed transtibial socket. The socket was printed from a proprietary polypropylene filament and FDM 3D-printing process. Fused disposition modeling involves producing successive cross-sectional layers on top of one another and welding them together. Because of this, a notch is formed between the printed layers. As part of this investigation, tensile test specimens were die-cut perpendicular to the material direction and tested according to ASTM D638—Standard Test Method for Tensile Properties of Plastics. From the measured load–elongation data, stress–strain curves and the corresponding material properties were determined, including modulus of elasticity E, Poisson’s ratio ν, yield strength Sy, and ultimate strength Su. The average values for each of these material properties were 955 MPa, 0.35, 11.4 MPa, and 16.3 MPa, respectively. In addition to defining tensile properties, this work demonstrated a viable methodology for characterizing the as-built material behavior of 3D-printed sockets.


2019 ◽  
Vol 25 (4) ◽  
pp. 672-678 ◽  
Author(s):  
Josef Valentin Ecker ◽  
Andreas Haider ◽  
Ivana Burzic ◽  
Axel Huber ◽  
Gerhard Eder ◽  
...  

Purpose This papers aims to study the influence of water absorption on the mechanical properties of poly lactic acid (PLA) and PLA/Wood composites. Virgin PLA and PLA/Wood double-bone-shaped specimens were prepared by two methods: injection moulding and 3D printing. The results were compared to each other and showed the influence of the production method on the properties of the produced parts. Design/methodology/approach Morphology studies were done by scanning electron microscopy (SEM) from fracture surfaces of tensile and notched impact specimens of all samples. Tensile properties were analysed by the production and testing of dog-bone-shaped samples. Heat deflection temperature (HDT) was tested, as also was the crystallinity of the tested samples by differential scanning calorimetry. Findings The values for notched impact strength were higher upon water uptake in the case of injection-moulded specimens, which was not the case with 3D-printed specimens. Tensile properties of the specimens produced by both methods were reduced after water absorption tests. Values of the HDT were also lower after water absorption tests studied for both processing methods. Originality/value Morphology studies were done by SEM from fracture surfaces of tensile as well as notched impact specimens of injection-moulded and 3D-printed samples. The effect of water storage on various samples was tested. The two different production technologies were compared to each other owing to their influence of water storage. This study also dealt with NFC compounds and produced NFC composites and the influence of water storage on these samples.


2021 ◽  
pp. 073168442110160
Author(s):  
Wei Chen ◽  
Qiuju Zhang ◽  
Han Cao ◽  
Ye Yuan

Continuous fiber reinforced thermoplastic composites with advantages of high strength, long life, corrosion resistance, and green recyclability have been widely used in aerospace, transportation and high-precision processing equipment, etc. 3D printing is an advanced additive manufacturing technology that enables the rapid manufacture of complex structures and high-performance composites. The aim of this study is to evaluate the precision and stability of 3D printed continuous fiber reinforced thermoplastic composite structures and construct suitable mathematical models to predict tensile properties. Samples evaluated in this study were produced by varying the volume fraction and distribution mode (average and central mode) of fibers within the printed structures. The measured data proved the continuous fiber reduced the printing precision on width and thickness and the printing stability on thickness, while it improved the width stability in the XY horizontal plane. The printing precision and stability of samples with an average mode were slightly better than those of samples with a central mode. The tensile results of 3D printed continuous fiber reinforced thermoplastic composites demonstrated that an increasing volume of fiber reinforcement resulted in the increasing stiffness and ultimate strength of tested samples. The average elastic modulus and ultimate tensile strength of samples with the average mode were higher than those of samples with the central mode, while the average strain at break was quite the opposite. Mathematical models of elastic modulus were established to achieve the relative errors 0.06% and 2.14% for checked samples, while relative errors of the mixing rule were up to 76.15% and 81.71%, respectively. Some typical defects affecting the surface quality and the fracture behavior of 3D printed samples were researched by the analysis of micromorphology.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Imjoo Jung ◽  
Hyelim Kim ◽  
Sunhee Lee

AbstractThis study intended to compare and analyze the Poisson's ratio and mechanical properties of aramid knit (ARNT), 3D printed auxetic re-entrant pattern (3DP-RE), and 2 types of composite fabrics manufactured with ARNT and 3DP-RE. Specimens were manufactured by 3D printing the re-entrant pattern with a CFDM (conveyor fused deposition modeling) 3D printer and TPU (thermoplastic polyurethane) filament, combining with aramid knit in 2 ways. Then, Poisson's ratio, bending, compression, and tensile properties were tested. As a result of Poisson's ratio, 3DP-RE and its 2 types of composite fabric showed negative Poisson's ratio at all angles and deformed stable at 0° and 90° than the bias direction. The bending strength confirmed that the composite fabric showed a lower value. But, the strain at max bending strength was greater than a substrate fabric. At the compression properties, it has been confirmed that compression strength and toughness are improved when manufacturing composite fabrics. As a result of tensile properties, 3DP-RE and composite fabrics were significantly more initial modulus, elongation and toughness than ARNT and were shown to be the largest in gradient 90°. Therefore, it is confirmed that the performance is excellent when fabricated as a 3DP-RE/ARNT composite fabric, and based on the results of studies, we intend to use it as the basic data for composite fabrics of auxetic structure suitable for shoe uppers.


Author(s):  
Merel van der Stelt ◽  
Luc Verhamme ◽  
Cornelis H Slump ◽  
Lars Brouwers ◽  
Thomas JJ Maal

Measurement and production of traditional prosthetic sockets are time-consuming, labor-intensive, and highly dependent on the personnel involved. An alternative way to make prostheses is using computer-aided design (CAD) and computer-aided manufacturing (CAM). Fused Filament Fabrication (FFF) may be an alternative to make low-cost prosthetic sockets. This study investigates the tensile properties of potential printing materials suitable for FFF according to ISO527 (Standard Test Method for Tensile Properties of Plastics). To ensure that FFF-printed sockets are safe for patient usage, the structural integrity of the 3D-printed prosthesis will be investigated according to ISO10328 (International Standard Structural Testing of Lower Limb Prostheses). Tough PLA was the most suitable print material according to ISO 527 testing. The Tough PLA printed socket completed 2.27 million cycles and a static test target value of 4025 N. Future research remains necessary to continue testing new potential materials, improve print settings, and improve the socket design for the production of FFF-printed transtibial prosthetic sockets. FFF using Tough PLA can be used to create transtibial prostheses that almost comply with the International Standard for Structural Testing of Lower Limb Prostheses.


2020 ◽  
pp. 089270572096456
Author(s):  
M Heidari-Rarani ◽  
N Ezati ◽  
P Sadeghi ◽  
MR Badrossamay

Fused deposition modeling (FDM) is the most common method for additive manufacturing of polymers, which is expanding in various engineering applications due to its ability to make complex parts readily. The mechanical properties of 3D printed parts strongly depend on the correct selection of the process parameters. In this study, the effect of three important process parameters such as infill density, printing speed and layer thickness were investigated on the tensile properties of polylactic acid (PLA) specimens. Taguchi design of experiment method is applied to reduce the number of experiments and find the optimal parameters for maximum mechanical properties, minimum weight and minimum printing time. Experimental results showed that the optimum process parameters for the modulus of elasticity and ultimate tensile strength were infill density of 80%, printing speed of 40 mm/s and layer thickness of 0.1 mm, while for the failure strain were the infill density of 80%, printing speed of 40 mm/s and layer thickness of 0.2 mm. Finally, the accuracy of the Taguchi method was assessed for prediction of mechanical properties of FDM-3D printed specimens.


2018 ◽  
Vol 24 (7) ◽  
pp. 1131-1141 ◽  
Author(s):  
Yehia Ibrahim ◽  
Garrett W. Melenka ◽  
Roger Kempers

Purpose This paper aims to evaluate and predict the tensile properties of additively manufactured continuous wire polymer composites (CWPCs). Design/methodology/approach An open-source 3D printer was modified to print CWPCs where metal wires act as a reinforcement within a polymer matrix. The influence of different wire materials and diameters on the tensile modulus and ultimate tensile strength was studied. Different polymer matrixes were used to investigate the effect of the matrix on CWPCs’ tensile properties. The behaviour of samples was predicted analytically using the rule of mixture micromechanical approach and investigated experimentally using an American society for testing and materials standard tensile test. Findings Experimental results showed improvement in the elastic modulus and ultimate strength of CWPCs compared with non-reinforced specimens. Deviation between the experimental data and the analytical prediction was found to be dependent on the matrix type, wire volume fraction and wire material. Originality/value This paper introduces novel continuous metal wire-reinforced 3D printed composites. The continuous wire inside the print can be used as a strain gauge which can give an early alert for material failure. Applications for CWPCs include 3D-printed pressure and temperature sensors which measure the change in the wire’s electrical resistance and 3D-printed heaters which would work by supplying current through continuous wires.


Sign in / Sign up

Export Citation Format

Share Document