A review paper: Development of novel friction material for vehicle brake pad application to minimize environmental and health issues

2019 ◽  
Vol 19 ◽  
pp. 209-212
Author(s):  
S.P. Jadhav ◽  
S.H. Sawant
2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
◽  

Abstract This workshop is dedicated on SDGs in the focus of environmental and health issues, as very important and actual topic. One of the characteristics of today's societies is the significant availability of modern technologies. Over 5 billion (about 67%) people have a cellphone today. More than 4.5 billion people worldwide use the Internet, close to 60% of the total population. At the same time, one third of the people in the world does not have access to safe drinking water and half of the population does not have access to safe sanitation. The WHO at UN warns of severe inequalities in access to water and hygiene. Air, essential to life, is a leading risk due to ubiquitous pollution and contributes to the global disease burden (7 million deaths per year). Air pollution is a consequence of traffic and industry, but also of demographic trends and other human activities. Food availability reflects global inequality, famine eradication being one of the SDGs. The WHO warns of the urgency. As technology progresses, social inequality grows, the gap widens, and the environment continues to suffer. Furthermore, the social environment in societies is “ruffled” and does not appear to be beneficial toward well-being. New inequalities are emerging in the availability of technology, climate change, education. The achievement reports on the Sustainable Development Goals (SDGs), also point out to the need of reviewing individual indicators. According to the Sustainable Development Agenda, one of the goals is to reduce inequalities, and environmental health is faced by several specific goals. The Global Burden of Disease is the most comprehensive effort to date to measure epidemiological levels and trends worldwide. It is the product of a global research collaborative and quantifies the impact of hundreds of diseases, injuries, and risk factors in countries around the world. This workshop will also discuss Urban Health as a Complex System in the light of SDGs. Climate Change, Public Health impacts and the role of the new digital technologies is also important topic which is contributing to SDG3, improving health, to SDG4, allowing to provide distance health education at relatively low cost and to SDG 13, by reducing the CO2 footprint. Community Engagement can both empower vulnerable populations (so reducing inequalities) and identify the prior environmental issues to be addressed. The aim was to search for public health programs using Community Engagement tools in healthy environment building towards achievement of SDGs. Key messages Health professionals are involved in the overall process of transformation necessary to achieve the SDGs. Health professionals should be proactive and contribute to the transformation leading to better health for the environment, and thus for the human population.


2012 ◽  
Vol 531-532 ◽  
pp. 8-12
Author(s):  
M.A. Sai Balaji ◽  
K. Kalaichelvan

Organic fibres (Kevlar/ Arbocel / Acrylic) have good thermal stability, higher surface area and bulk density. The optimization of organic fibres percentage for thermal behaviour is considered using TGA. The temperature raise during brake application will be between 150-4000 C and this temperature zone is very critical to determine the fade characteristics during friction testing. Hence, three different friction composites are developed with the same formulation varying only the Kevlar, Arbocel and Acrylic fibres which are compensated by the inert filler namely the barites and are designated as NA01, NA02 and NA03 respectively. After the fabrication, the TGA test reveals that the composite NA03 has minimum weight loss. The friction coefficient test rig is then used to test the friction material as per SAE J661a standards. The results prove that the brake pad with minimum weight loss during TGA has higher friction stability. Thus, we can correlate the thermal stability with the stability of friction.


Author(s):  
Amanda Hart

The topic of my research is informal recycling with a focus on developing nations. Scavengers are considered people who sort through garbage but not through an organization. There is a negative stigma that is associated with this type of lifestyle. The discussion will explore the benefits of organized informal recycling programs in countries such as Brazil and Nigeria. When informal recycling becomes organized jobs are created allowing for more residents to become employed. Some of the benefits of informal recycling include reducing the volume of waste, the life span of disposal sites is increased as well it helps reduce the amount of methane produced. These programs also allow for certain materials to be discovered which can easily be reused. For example, there are metals that can be sorted through and ultimately sold to companies. Another example would be the organics from the garbage are used in order to support pig farms. This decreases the cost of production for the pig farmers, which allows them a larger profit margin. Also, social, economic, environmental and health issues will be discussed in further detail. Finally, terms will be defined to allow a better understanding of the informal recycling world and how it operates.


Author(s):  
CH Achebe ◽  
JL Chukwuneke ◽  
FA Anene ◽  
CM Ewulonu

The development of automobile brake pad using locally sourced palm kernel fiber was carried out. Asbestos, a carcinogenic material, has been used for decades as a friction material. This development has thus prompted a couple of research efforts geared towards its replacement for brake pad manufacture. Palm kernel fiber was used as an alternative filler material in conjunction with various quantities of epoxy resin as the matrix. Three sets of compositions were made, and the resulting specimens subjected to physical and mechanical tests using standard materials, procedures, and equipment. The essence is to determine their suitability and hence possible performance in service. The result showed that sample C with 40% palm kernel fiber content having hardness, compressive strength, abrasion resistance, specific gravity, water absorption, and oil absorption of 178 MPa, 96.2 MPa, 1.67 mg/m, 1.8 g/cm3, 1.86%, and 0.89%, respectively, had an optimum performance rating. It was equally ascertained that increase in the filler content had the effect of increase in hardness, wear resistance, and specific gravity of the composite brake pad, while water and oil absorption got decreased when compared with results obtained by other researchers using conventional brake pads made of other friction materials including asbestos. This is an indicator that palm kernel fiber is a possible and effective retrofit for asbestos as a filler material in automotive brake pad manufacture.


2016 ◽  
Vol 32 (6) ◽  
Author(s):  
Hazwani Suhaimi ◽  
Diganta Bhusan Das

AbstractTissue engineering has evolved into an exciting area of research due to its potential in regenerative medicine. The shortage of organ donors as well as incompatibility between patient and donor pose an alarming concern. This has resulted in an interest in regenerative therapy where the importance of understanding the transport properties of critical nutrients such as glucose in numerous tissue engineering membranes and scaffolds is crucial. This is due to its dependency on successful tissue growth as a measure of potential cure for health issues that cannot be healed using traditional medical treatments. In this regard, the diffusion of glucose in membranes and scaffolds that act as templates to support cell growth must be well grasped. Keeping this in mind, this review paper aims to discuss the glucose diffusivity of these materials. The paper reviews four interconnected issues, namely, (i) the glucose diffusion in tissue engineering materials, (ii) porosity and tortuosity of these materials, (iii) the relationship between microstructure of the material and diffusion, and (iv) estimation of glucose diffusivities in liquids, which determine the effective diffusivities in the porous membranes or scaffolds. It is anticipated that the review paper would help improve the understanding of the transport properties of glucose in membranes and scaffolds used in tissue engineering applications.


2013 ◽  
Vol 10 (6) ◽  
pp. 523-528 ◽  
Author(s):  
A. Muzathik ◽  
Y. Nizam ◽  
M. Ahmad ◽  
W. Nik

Friction material in an automotive brake system plays an important role for effective and safe brake performance. A single material has never been sufficient to solve performance related issues. Current research aimed to examine properties of Boron mixed brake pads by comparing them with the commercial brake pads. Friction coefficient of Boron mixed brake pads and commercial brake pads were significantly different and increased with the increase in surface roughness. The abrupt reduction of friction coefficient is more significant in commercial brake pad samples than in Boron mixed brake pad formulations. Fade occurred in commercial brake pad sample at lower temperatures. Boron formulations are more stable than their commercial counterparts.


Author(s):  
R. C. Shivamurthy ◽  
M. K. Surappa

Tribological characteristics of A356 Al alloy-10 vol. % SiCP composite discs/brake pad has been studied under dry sliding conditions at sliding speeds in the range 2 to 5 m/s and at loads in the range 1–3 MPa. In these tests, disc of Al MMCs and pin of friction pad made of polymer based composite were used. Wear rates of Al MMC disc as calculated by weight loss method, found to be negative at high sliding speed and high load. Worn surface of disc has been analyzed using EDAX. SEM analyses of worn surfaces of composite disc infer transfer of material from pin to the disc resulting in the formation of tribolayers. Two types of tribolayers were observed on the worn surface, one having shiny appearance of copper rich layer and other is dark in colour consisting of Mg, S, Fe, Ba, Ca, Si, Cu, In and Al. In the later layers were rich in copper and appear as bright patchy layers under SEM. Coverage of copper rich layers increase all along and across the worn track at a sliding speed of 4 and 5 m/s in the load range 2 to 3 MPa. Atomic percent of copper increase with load and consequently affect the wear rate of disc. EDAX analysis of dark tribo layers on wear track of composite disc show continuous increase in the amount of Cu and Ba with increase in speed and load. Hence, wear rate of composite discs were relatively low under all test conditions. These results clearly indicate composition of friction material having profound influence on the wear rate of Al MMC discs.


2020 ◽  
Vol 21 (6) ◽  
pp. 613
Author(s):  
Amira Sellami ◽  
Nesrine Hentati ◽  
Mohamed Kchaou ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Riadh Elleuch

Friction materials are composed of numerous ingredients which differ from nature and particles size. Each ingredient has its own impact on the mechanical and tribological behavior of the material. Brass ingredients have a great impact on the thermal gradient dissipation in the sliding contact between disc and brake pad material. In this research, the influence of different sizes and forms of brass ingredient was studied on the friction material behavior. The physical (density), mechanical (yield strength, young module) and thermal (thermal conductivity and specific heat) properties of the considered composites were characterized. Results proves that only physical and mechanical properties are sensitive to the changes in size and form of brass particles. The tribological behavior of the brake friction materials was also assessed using a pin-on-disc tribometer. The results show that bigger brass particles and their elongated shape allows it to be well embedded on the pad surface during braking application, and thus decreased wear rate . In contrast, the smaller particle decrease the friction stability and it rounded shape increase wear of the material since it tearing from the surface by abrasive wear.


Sign in / Sign up

Export Citation Format

Share Document