Characterization of groundnut shell powder as a potential reinforcement for biocomposites

2021 ◽  
pp. 204124792110087
Author(s):  
Mohammed Awwalu Usman ◽  
Ibrahim Momohjimoh ◽  
Abdulhafiz Onimisi Usman

Natural fibers are becoming the right candidate material as a substitute for glass fibers in the reinforcement of plastic polymers for various applications. The ease of their processing with minimal energy consumption and the quest to produce biodegradable plastics with lightweight has given natural fibers comparative advantages over synthetic fibers. In this study, groundnut shell powder (GSP) in different forms (untreated, sodium hydroxide treated and ash) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray fluorescence (XRF), Nuclear magnetic resonance (NMR), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) to evaluate their possible utilization as reinforcement in polymers. GSP was treated with sodium hydroxide for 5 hrs and dried in vacuum for 24 hrs to obtain treated GSP while ash GSP was formed by heating GSP in the furnace at 600 °C for about 3 hrs. The results reveal that sodium hydroxide treatment was very effective in the breaking down of the hydrogen bond with a consequent reduction in the hydrophilicity of the GSP. This would promote GSP bonding with the hydrophobic polymer matrix in the development of natural fiber reinforced plastic polymer composite materials. Ash GSP was found to have the highest crystallinity among the three forms of GSP based on XRD results. Therefore, the result achieved in this work confirmed that treated and ash GSP fibers are good reinforcement material in the production of polymer composites, with the actual choice depending on end-use property requirements of the composite.

2013 ◽  
Vol 315 ◽  
pp. 443-447 ◽  
Author(s):  
S.K.A. Saferi ◽  
Y. Yusof

As demand for clean and healthy environment, people make many alternate solutions to save the environment. To save trees and overcome landfill of waste material and waste disposal by burning activities issues (cause to losing energy and increase pollution), people nowadays take recycling as a recovery. Recycling waste paper into new product increased over the years. Shortage of wood supply required new sources of natural fiber for papermaking industry. Many researchers have studied new sources of natural fibers from non wood materials, such as oil palm residues, kenaf (Hibiscus Cannabinus), pineapple leaf, banana, and coconut fiber. Kenaf is choose as reinforcement agent for recycled waste paper to maximize the use of kenaf in industry application due its wide range of advantages where pineapple leaf are choose as reinforcement agent because abundantly of these material in Malaysia. Reinforcement of natural fiber into waste paper during recycling process expected to increased strength properties of final product. To understand the right and suitable processing method for kenaf fiber and pineapple leaf leaves previous work from other researchers are studied to investigate pulping procedure of natural fiber and its effect on mechanical strength.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 484 ◽  
Author(s):  
Stefan Cichosz ◽  
Anna Masek

When considering cellulose (UFC100) modification, most of the processes employ various solvents in the role of the reaction environment. The following article addresses a solvent-free method, thermal drying, which causes a moisture content decrease in cellulose fibers. Herein, the moisture content in UFC100 was analyzed with spectroscopic methods, thermogravimetric analysis, and differential scanning calorimetry. During water desorption, a moisture content drop from approximately 6% to 1% was evidenced. Moreover, drying may bring about a specific variation in cellulose’s chemical structure. These changes affected the cellulose-filled polymer composite’s properties, e.g., an increase in tensile strength from 17 MPa for the not-dried UFC100 to approximately 30 MPa (dried cellulose; 24 h, 100 °C) was observed. Furthermore, the obtained tensile test results were in good correspondence with Payne effect values, which changed from 0.82 MPa (not-dried UFC100) to 1.21 MPa (dried fibers). This raise proves the reinforcing nature of dried UFC100, as the Payne effect is dependent on the filler structure’s development within a polymer matrix. This finding paves new opportunities for natural fiber applications in polymer composites by enabling a solvent-free and efficient cellulose modification approach that fulfils the sustainable development rules.


2014 ◽  
Vol 984-985 ◽  
pp. 285-290
Author(s):  
K. Hari Ram ◽  
R. Edwin Raj

Polymer composites reinforced with natural fibers have been developed in recent years, showing significant potential for various engineering applications due to their inherent sustainability, low cost, light weight and comparable mechanical strength. Sisal is a natural fiber extracted from leaves of Agave Sisalana plants and substituted for natural glass fiber. Six different combinations of specimens were prepared with sisal, sisal-glass and glass fibers with epoxy as matrix at two different fiber orientation of 0-90° and ±45°. Mechanical characterization such as tensile, flexural and impact testing were done to analyze their mechanical strength. It is found that the hybrid composite sisal-glass-epoxy has better and comparable mechanical properties with conventional glass-epoxy composite and thus provides a viable, sustainable alternate polymer composite.


Author(s):  
Kannan Rassiah ◽  
Aidy Ali

There are many studies has been done on the natural fibers of cellulose contents as a reinforcing material. Yet, the main challenge in the research of natural fiber is the poor compatibility. In this study, the surface modification techniques were performed on granular size rice husk (RH) such as untreated, boiled and sodium hydroxide (NaOH) treated reinforced polypropylene (PP) was consolidated to improve the mechanical properties. An internal mixer machine is set for four different composites compositions and the samples produced by hot press machine. The specimens were analyzed by different techniques such as hardness test, impact test, tensile test and scanning electron microscopy (SEM). This study shown that, the presence of NaOH indicates higher young modulus and hardness test value compared to boiled treated and untreated RH. While for the impact strength and tensile strength value shows untreated, boiled treated and NaOH treated PP/RH composite decreased when fiber loading increased. The morphological analysis was conducted to determine the effects of natural fiber bonding between the matrix materials after boiling and NaOH treatments for mechanical testing broken specimens.


2019 ◽  
Vol 8 (4) ◽  
pp. 6972-6977

The use of natural fiber composite has been widely promoted in many industries such as construction, automotive and even aerospace. Natural fibers can be extracted from plants that are abundantly available in the form of waste such as sunflower seed shells (SSS) and groundnut shells (GNS). These fibers were chosen as the reinforcement in epoxy to form composites. The performance of composites was evaluated following the ASTM D3039 and ASTM D790 for tensile and flexural tests respectively. Eight types of composites were prepared using SSS and GNS fibers as reinforcement and epoxy as the matrix with the fiber content of 20wt %. The fibers were untreated and treated with Sodium Hydroxide (NaOH) at various concentrations (6%, 10%, 15%, and 20%) and soaking time (24, 48 and 72 hours). The treatment has successfully enhanced the mechanical properties of both composites, namely SSS/epoxy and GNS/epoxy composites. The SSS/epoxy composite has the best mechanical properties when the fibers were treated for 48 hours using 6% of NaOH that produced 22 MPa and 13 MPa of tensile and flexural strength respectively. Meanwhile, the treatment on groundnut shells with 10% sodium Hydroxide for 24 hours has increased the Flexural strength tremendously (53%), however no significant effect on the tensile strength. The same trend was also observed on the tensile and flexural modulus. The increase of 41% in flexural modulus after treatment with 10% NaOH for 24 hours was also the evidence of mechanical properties enhancement. The evidence of improved fiber and matrix bonding after fiber treatment was also observed using a scanning electron microscope (SEM). The SSS/epoxy composites performed better in tensile application, meanwhile the GNS/epoxy composites are good in flexural application.


2015 ◽  
Vol 766-767 ◽  
pp. 162-166 ◽  
Author(s):  
Ashwin Sailesh ◽  
K. Palanikumar ◽  
R. Arunkumar ◽  
P. Ramu ◽  
A. Maxwell Briston ◽  
...  

Over the past two to three decades the development in the field of composite material is immense and continues to be increasing. The utilization of natural fibers in the field of composites is increasing day by day. This is due the fact that natural fibers are eco-friendly, easily available, non-abrasive and economical. The combination of natural fiber with Glass fibers is finding increased applications. In the current investigation Banana – Bamboo – Glass fiber reinforced composites is fabricated by the method of Hand – Layup with variable fiber orientation and is tested for its flexural strength and the best flexural strength is identified by using Taguchi Methodology. Nomenclature Used: BN – Banana Fiber BM – Bamboo Fiber G – Glass fiber DOE – Design of Experiments S/N Ratio – Signal to Noise Ratio OA – Orthogonal Array.


2020 ◽  
Vol 33 ◽  
pp. 2838-2841 ◽  
Author(s):  
A. Abraham Eben Andrews ◽  
P. Karthick ◽  
D. Dhaana Sitharthan ◽  
K. Sarath Kumar ◽  
K. Chella Balaji ◽  
...  

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744092 ◽  
Author(s):  
Wendy Zhang ◽  
Xiaowen Yuan

Poly(lactide) (PLA) — flax fibers stereocomplex composites were prepared by casting commercial poly(L-lactide) (PLA) and flax-g-poly(D-lactide) (flax-g-PDLA), where flax-g-PDLA was synthesized via ring-opening polymerization. Successful surface grafting was revealed by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) studies. DSC results showed that stereocomplex crystallites formed between the PLA matrix and flax-g-PDLA, resulting in good fiber/PLA interfacial adhesion.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 741
Author(s):  
Quan Wang ◽  
Fangyuan Jiang ◽  
Xiao-Kun Ouyang ◽  
Li-Ye Yang ◽  
Yangguang Wang

As a natural biological adsorbent, shell powder is inexpensive, highly efficient, and does not leave any chemical residue; thus, it can be used to remove contaminants from water. In this study, we used mussel shells as a raw material to prepare an adsorbent. Scanning electron microscopy was used to observe the surface morphology of the mussel shell powder before and after calcination, and X-ray diffraction measurements, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller measurements were performed to analyze the structure and composition of calcined mussel shell powder. Characterization of the shell powder before and after calcination revealed a change from calcium carbonate to calcium oxide, as well as the formation of a surface porous structure. Using Pb(II) as a representative contaminant, various factors affecting the adsorption were explored, and the adsorption mechanism was analyzed. It was found that the adsorption is consistent with the Freundlich adsorption isotherm and the pseudo second-order model. The calcined mussel shell powder exhibits excellent adsorption for Pb(II), with an adsorption capacity reaching 102.04 mg/g.


In this paper, tensile behaviour of the natural fiber composites such as the areca nut composites and the sunn hemp composites were determined. The fibers were arranged in different orientations such as the uniaxial, biaxial and the criss-cross arrangements. For both the types of fiber composites, specimens were made with and without the incorporation of E-glass fibers. Comparisons were done on the basis of fiber orientation, E-glass fibers incorporation and the type of natural fiber used. Initially, the fibers were treated with alkali, i.e. Sodium hydroxide (NaOH) in order to get better bonding at the fiber-matrix interface. The conventional hand lay-up technique followed by the soft compression molding technique was carried out for fabricating the composite specimens. It was inferred from the results that the tensile strength was more for uniaxial arrangement and the least for biaxial arrangement in case of both the fibers. Further, for both the fibers, E-glass fiber incorporation increased the tensile strength as compared to the non-incorporated E-glass fiber composites. Also, sunn hemp composites showed better tensile strength than areca nut composites. The research suggested that the areca nut and sunn hemp composites were assets to many potential applications that did not require very high load bearing capabilities. These examined composites can be considered as very reliable materials for fabrication of lightweight materials used in automobile industry, packaging materials, medical field, etc.


Sign in / Sign up

Export Citation Format

Share Document