scholarly journals Diet and exercise reduce pre-existing NASH and fibrosis and have additional beneficial effects on the vasculature, adipose tissue and skeletal muscle via organ-crosstalk

Metabolism ◽  
2021 ◽  
Vol 124 ◽  
pp. 154873
Author(s):  
Anita M. van den Hoek ◽  
Jelle C.B.C. de Jong ◽  
Nicole Worms ◽  
Anita van Nieuwkoop ◽  
Marijke Voskuilen ◽  
...  
1996 ◽  
Vol 81 (6) ◽  
pp. 2445-2455 ◽  
Author(s):  
Robert Ross ◽  
John Rissanen ◽  
Heather Pedwell ◽  
Jennifer Clifford ◽  
Peter Shragge

Ross, Robert, John Rissanen, Heather Pedwell, Jennifer Clifford, and Peter Shragge. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J. Appl. Physiol. 81(6): 2445–2455, 1996.—The effects of diet only (DO) and diet combined with either aerobic (DA) or resistance (DR) exercise on subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), lean tissue (LT), and skeletal muscle (SM) tissue were evaluated in 33 obese men (DO, n= 11; DA, n = 11; DR, n = 11). All tissues were measured by using a whole body multislice magnetic resonance imaging (MRI) model. Within each group, significant reductions were observed for body weight, SAT, and VAT ( P < 0.05). The reductions in body weight (∼10%) and SAT (∼25%) and VAT volume (∼35%) were not different between groups ( P > 0.05). For all treatments, the relative reduction in VAT was greater than in SAT ( P < 0.05). For the DA and DR groups only, the reduction in abdominal SAT (∼27%) was greater ( P < 0.05) than that observed for the gluteal-femoral region (∼20%). Conversely, the reduction in VAT was uniform throughout the abdomen regardless of treatment ( P > 0.05). MRI-LT and MRI-SM decreased both in the upper and lower body regions for the DO group alone ( P < 0.05). Peak O2 uptake (liters) was significantly improved (∼14%) in the DA group as was muscular strength (∼20%) in the DR group ( P< 0.01). These findings indicate that DA and DR result in a greater preservation of MRI-SM, mobilization of SAT from the abdominal region, by comparison with the gluteal-femoral region, and improved functional capacity when compared with DO in obese men.


2010 ◽  
Vol 104 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Joana Crisóstomo ◽  
Lisa Rodrigues ◽  
Paulo Matafome ◽  
Carmen Amaral ◽  
Elsa Nunes ◽  
...  

Inflammation plays an important role in diabetes mellitus and its complications. In this context, the negative cross-talk between adipose tissue and skeletal muscle leads to disturbances in muscle cell insulin signalling and induces insulin resistance. Because several studies have shown that energy restriction brings some benefits to diabetes, the aim of the present study was to evaluate the effects of dietary restriction on systemic and skeletal muscle inflammatory biomarkers, such C-reactive protein, adipokines and cytokines, and in insulin resistance in Goto-Kakizaki rats. This is an animal model of spontaneous non-obese type 2 diabetes with strongly insulin resistance and without dyslipidaemia. Animals were maintained during 2 months of dietary restriction (50 %) and were killed at 6 months of age. Some biochemical determinations were done using ELISA and Western blot. Data from the present study demonstrate that in Goto-Kakizaki rats the dietary restriction improved insulin resistance, NEFA levels and adipokine profile and ameliorated inflammatory cytokines in skeletal muscle. These results indicate that dietary restriction in type 2 diabetes enhances adipose tissue metabolism leading to an improved skeletal muscle insulin sensitivity.


2010 ◽  
Vol 162 (3) ◽  
pp. 515-523 ◽  
Author(s):  
Karen Ruschke ◽  
Lauren Fishbein ◽  
Arne Dietrich ◽  
Nora Klöting ◽  
Anke Tönjes ◽  
...  

ObjectiveObesity and type 2 diabetes (T2D) are reaching epidemic proportions in Western societies, and they contribute to substantial morbidity and mortality. The peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ coactivator-1α (PGC-1α) system plays an important role in the regulation of efficient energy utilization and oxidative phosphorylation, both of which are decreased in obesity and insulin resistance.Design and methodsWe measured the metabolic parameters and the expression of PPARγ and PGC-1α mRNA using quantitative real-time PCR in omental and subcutaneous (SC) adipose tissues in an observational study of 153 individuals as well as in SC fat and skeletal muscle in an interventional study of 60 subjects (20 each with normal glucose tolerance, impaired glucose tolerance, and T2D) before and after intensive physical training for 4 weeks.ResultsPPARγ and PGC-1α mRNA expression in both fat depots as well as in skeletal muscle is associated with markers of insulin resistance and cardiovascular risk. PGC-1α mRNA expression is significantly higher in SC fat than in omental fat, whereas PPARγ mRNA expression is not significantly different between these fat depots. Skeletal muscle and SC fat PPARγ and PGC-1α mRNA expression increased significantly in response to physical training.ConclusionsGene expression of PPARγ and PGC-1α in human adipose tissue is related to markers of insulin resistance and cardiovascular risk. Increased muscle and adipose tissue PPARγ and PGC-1α expression in response to physical training may mediate the beneficial effects of exercise on insulin sensitivity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244804
Author(s):  
Timothy D. Allerton ◽  
Jonathan J. Savoie ◽  
Mark D. Fitch ◽  
Marc K. Hellerstein ◽  
Jacqueline M. Stephens ◽  
...  

Exercise has beneficial effects on metabolism and health. Although the skeletal muscle has been a primary focus, exercise also mediates robust adaptations in white adipose tissue. To determine if exercise affects in vivo adipocyte formation, fifty-two, sixteen-week-old C57BL/6J mice were allowed access to unlocked running wheels [Exercise (EX) group; n = 13 males, n = 13 females] or to locked wheels [Sedentary (SED) group; n = 13 males, n = 13 females] for 4-weeks. In vivo adipocyte formation was assessed by the incorporation of deuterium (2H) into the DNA of newly formed adipocytes in the inguinal and gonadal adipose depots. A two-way ANOVA revealed that exercise significantly decreased new adipocyte formation in the adipose tissue of mice in the EX group relative to the SED group (activity effect; P = 0.02). This reduction was observed in male and female mice (activity effect; P = 0.03). Independent analysis of the depots showed a significant reduction in adipocyte formation in the inguinal (P = 0.05) but not in the gonadal (P = 0.18) of the EX group. We report for the first time that exercise significantly reduced in vivo adipocyte formation in the adipose tissue of EX mice using a physiologic metabolic 2H2O-labeling protocol.


2021 ◽  
Author(s):  
Steffen Maak ◽  
Frode Norheim ◽  
Christian A Drevon ◽  
Harold P Erickson

Abstract In 2002, a transmembrane protein now known as FNDC5 was discovered and shown to be expressed in skeletal muscle, heart and brain. It was virtually ignored for 10 years, until a study in 2012 proposed that, in response to exercise, the ectodomain of skeletal muscle FNDC5 was cleaved,traveled to white adipose tissue and induced browning. The wasted energy of this browning raised the possibility that this myokine, named irisin, might mediate some beneficial effects of exercise. Since then, more than 1,000 papers have been published exploring the roles of irisin. A major interest has been on adipose tissue and metabolism, following up the major proposal from 2012. Many studies correlating plasma irisin levels with physiological conditions are questioned for use of flawed assays for irisin concentration. However, experiments altering irisin levels by injecting recombinant irisin or by gene knockout are more promising. Recent discoveries have suggested potential roles of irisin to bone remodeling and to brain, with effects potentially related to Alzheimer’s disease. We also discuss some discrepancies between research groups and mechanisms that need to be determined. Some important questions raised in the initial discovery of irisin like the role of the mutant start codon of human FNDC5, the mechanism of ectodomain cleavage remain to be answered. Apart from these specific questions, a promising new tool has been developed - mice with a global or tissue-specific knockout of FNDC5. In this review, we critically examine the current knowledge and delineate potential solutions to resolve existing ambiguities.


2014 ◽  
Vol 39 (2) ◽  
pp. 109-116 ◽  
Author(s):  
David C. Wright

Owing to its obligatory role in locomotion and the fact that it accounts for the vast majority of whole-body glucose and lipid oxidation, much work has focused on studying the biochemical adaptations that occur in skeletal muscle in response to exercise. However, over the past several years there has been a growing appreciation that adipose tissue is an important player in regulating systemic carbohydrate and lipid homeostasis. Despite this, the examination of how exercise alters adipose tissue function and metabolism is, when compared with skeletal muscle, in its infancy. The purpose of the current review is to highlight some of the recent findings from our laboratory and others that focus on the emerging area of adipose tissue exercise biochemistry. Specifically, the role of exercise on the induction of mitochondrial and glyceroneogenic enzymes will be examined and will be compared with the well-characterized effects of thiazolidinediones, which are insulin-sensitizing drugs. A particular emphasis will be placed on the role of interleukin-6 in mediating the effects of exercise. Finally, we will discuss recent data from our laboratory demonstrating beneficial effects of resveratrol supplementation on adipose tissue metabolism.


2020 ◽  
Vol 45 (9) ◽  
pp. 957-967
Author(s):  
Eva Gil-Iturbe ◽  
Elisa Félix-Soriano ◽  
Neira Sáinz ◽  
Adrián Idoate-Bayón ◽  
Rosa Castilla-Madrigal ◽  
...  

Obesity is characterized by excessive fat accumulation and inflammation. Aging has also been characterized as an inflammatory condition, frequently accompanied by accumulation of visceral fat. Beneficial effects of exercise and n-3 long-chain polyunsaturated fatty acids in metabolic disorders have been described. Glucose transporter 12 (GLUT12) is one of the less investigated members of the GLUT family. Glucose, insulin, and tumor necrosis factor alpha (TNF-α) induce GLUT12 translocation to the membrane in muscle, adipose tissue, and intestine. We aimed to investigate GLUT12 expression in obesity and aging, and under diet supplementation with docosahexaenoic acid (DHA) alone or in combination with physical exercise in mice. Aging increased GLUT12 expression in intestine, kidney, and adipose tissue, whereas obesity reduced it. No changes on the transporter occurred in skeletal muscle. In obese 18-month-old mice, DHA further decreased GLUT12 in the 4 organs. Aerobic exercise alone did not modify GLUT12, but the changes triggered by exercise were able to prevent the DHA-diminishing effect, and almost restored GLUT12 basal levels. In conclusion, the downregulation of metabolism in aging would be a stimulus to upregulate GLUT12 expression. Contrary, obesity, an excessive energy condition, would induce GLUT12 downregulation. The combination of exercise and DHA would contribute to restore basal function of GLUT12. Novelty In small intestine, kidney and adipose tissue aging increases GLUT12 protein expression whereas obesity reduces it. Dietary DHA decreases GLUT12 in small intestine, kidney, adipose tissue and skeletal muscle. Exercise alone does not modify GLUT12 expression, nevertheless exercise prevents the DHA-diminishing effect on GLUT12.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Neng Tine Kartinah ◽  
Imelda Rosalyn Sianipar ◽  
Nafi’ah ◽  
Rabia

Background. Recently, high-intensity intermittent training (HIIT) appears to have the same beneficial effects or even superior to those of continuous moderate-intensity training (CMIT) on body fat mass reduction. Exercise may induce myokine secretion such as irisin, which plays a role as a mediator of beiging process, and thus might contribute as treatment of obesity. However, the effects of those exercise formulas on irisin level changes as beiging agent are not known. In addition, metabolic states may affect the irisin responses to those exercise formulas. Therefore, this study was aimed to determine the different effects of exercises using HIIT and CMIT on circulating and tissue irisin levels in normal and abnormal metabolic conditions (obese). Methods. Sixteen male Sprague-Dawley rats (8 weeks of age) were randomized to 4 groups according to training regimens (HIIT and CMIT) and metabolic conditions (normal and abnormal/obese). The groups are (1) HIIT on normal metabolic (n=4), (2) CMIT on normal metabolic (n=4), (3) HIIT on abnormal metabolic (n=4), and (4) CMIT on abnormal metabolic (n=4). Abnormal metabolic condition was induced with high fat diet (19% fat) for 8 weeks in obese rats. Irisin levels in serum, skeletal muscle, and white adipose tissue were evaluated by ELISA. Results. Serum irisin levels were shown significantly higher in normal metabolic compared to abnormal metabolic condition (P<0.001). The effect of interaction between metabolic condition and exercise formula was found (P<0.01) on adipose irisin levels. The effect of HIIT was shown significantly more effective on adipose irisin levels, compared with CMIT in abnormal metabolic conditions. However, no significant differences of skeletal muscle irisin levels were found in both normal and abnormal metabolic subjects (P>0.05). Regarding exercise formula, no different effects were found between HIIT and CMIT on skeletal muscle irisin levels in both metabolic conditions (P>0.05). The similar findings were observed in serum irisin levels (P>0.05). Conclusions. The exercise effects in abnormal metabolic condition might be more adaptable in maintaining the irisin levels in skeletal muscle and induce the irisin uptake from circulation into adipose tissue. In addition, HIIT might be more involved to induce irisin uptake into adipose tissue; thus it might have the significant role in beiging process. However, further research about how the HIIT formula affects the regulation mechanisms of irisin uptake into adipose tissue is still warranted.


Sign in / Sign up

Export Citation Format

Share Document