Influence of post-bonding heating process on the long-term reliability of Cu/Al contact

2021 ◽  
Vol 118 ◽  
pp. 114058
Author(s):  
Motoki Eto ◽  
Noritoshi Araki ◽  
Takashi Yamada ◽  
Masaaki Sugiyama ◽  
Shinji Fujimoto
Keyword(s):  
Author(s):  
Max Bialaschik ◽  
Volker Schöppner ◽  
Mirko Albrecht ◽  
Michael Gehde

AbstractThe joining of plastics is required because component geometries are severely restricted in conventional manufacturing processes such as injection molding or extrusion. In addition to established processes such as hot plate welding, infrared welding, or vibration welding, hot gas butt welding is becoming more and more important industrially due to its advantages. The main benefits are the contactless heating process, the suitability for glass fiber reinforced, and high-temperature plastics as well as complex component geometries. However, various degradation phenomena can occur during the heating process used for economic reasons, due to the presence of oxygen in the air and to the high gas temperatures. In addition, the current patent situation suggests that welding with an oxidizing gas is not permissible depending on the material. On the other hand, however, there is experience from extrusion welding, with which long-term resistant weld seams can be produced using air. Investigations have shown that the same weld seam properties can be achieved with polypropylene using either air or nitrogen as the process gas. Experimental investigations have now been carried out on the suitability of different gases with regard to the weld seam quality when welding polyamides, which are generally regarded as more prone to oxidation. The results show that weld strengths are higher when nitrogen is used as process gas. However, equal weld strengths can be achieved with air and nitrogen when the material contains heat stabilizers.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tao Qiu ◽  
Yonggang Zhang

Mud cakes are very likely to occur at the shield cutter when the shield machine passes through a clay stratum, which adhere to the cutter and reduce the excavation efficiency. Due to the thrust of the cutter, the mud cakes are compacted and cause friction at the soil-structure interface, which results in high temperature and aggravates the adhesion, and the effect tends to become stronger as the heating process lasts. In this paper, the effects of the interface temperature and the contacting time between the soil and the hot surface on the adhesion properties of the soil were studied by a self-made adhesion test device. According to the findings, at low interfacial temperature (≤40°C), both the adhesion force and the amount of adhered soil were insignificant in a short term, and the effects were found to be strengthened as the contacting time went on; at the high interfacial temperature (≥50°C), very significant soil adhesion occurred at the structure surface within a short time, and as the contacting time increased, the amount of the adhered soil decreased rapidly while the adhesion force kept increasing, and both tended to remain a constant and become independent with the temperature after a long-term contact. This study is of guiding significance for understanding the formation and development of the shield mud cakes during shield construction.


Author(s):  
Fernando Agustin ◽  
Akhtar Kalam ◽  
Aladin Zayegh

EPR-insulated cables for distribution power network are not commonly used in Australia. This is due to the higher DDF of common EPR cables when compared with XLPE that contributes to the power loss and economics in transmitting electricity. This led to the development of EPR called TR-EPR with significantly lower DDF and uses silane curing process to address concerns about cost-effectiveness. The thermal behavior of low DDF silane cure TR-EPR is investigated for 30 months of exposure to the maximum operating temperature of material. The physical changes in the samples throughout the long-term aging are examined to create an opportunity to model the expected life cycle of TR-EPR cable under thermal stress. The cross-linking characteristics of TR-EPR cable are also examined by ambient curing that simulates the storage condition for unused cable and by cable heating process that simulates the condition when the cable is energized. The results are tabulated for a better understanding of the time for the material to cross-link at various conditions. The improved partial discharge values after cross-linking are also presented.


2015 ◽  
Vol 48 (5) ◽  
pp. 1522-1533 ◽  
Author(s):  
Catherine Dejoie ◽  
Nobumichi Tamura ◽  
Martin Kunz ◽  
Philippe Goudeau ◽  
Philippe Sciau

Archaeological artefacts are often heterogeneous materials where several phases coexist in a wide grain size distribution. Most of the time, retrieving structure information at the micrometre scale is of great importance for these materials. Particularly, the organization of different phases at the micrometre scale is closely related to optical or mechanical properties, manufacturing processes, functionalities in ancient times and long-term conservation. Between classic X-ray powder diffraction with a millimetre beam and transmission electron microscopy, a gap exists and structure and phase information at the micrometre scale are missing. Using a micrometre-size synchrotron X-ray beam, a hybrid approach combining both monochromatic powder micro-diffraction and Laue single-crystal micro-diffraction was deployed to obtain information from nanometre- and micrometre-size phases, respectively. Therefore providing a way to bridge the aforementioned gap, this unique methodology was applied to three different types of ancient materials that all show a strong heterogeneity. In Romanterra sigillata, the specific distribution of nanocrystalline hematite is mainly responsible for the deep-red tone of the slip, while the distribution of micrometre-size quartz in ceramic bodies reflects the change of manufacturing process between pre-sigillataand high-qualitysigillataperiods. In the second example, we investigated the modifications occurring in Neolithic and geological flints after a heating process. By separating the diffracted signal coming from the nano- and the micrometre scale, we observed a domain size increase for nanocrystalline quartz in geological flints and a relaxation of the residual strain in larger detritic quartz. Finally, through the study of a Roman iron nail, we showed that the carburation process to strengthen the steel was mainly a surface process that formed 10–20 µm size domains of single-crystal ferrite and nanocrystalline cementite.


2019 ◽  
Vol 19 (15) ◽  
pp. 1196-1203 ◽  
Author(s):  
Kianoush Khosravi-Darani ◽  
F. Barzegar ◽  
M. Baghdadi

: Cancer is the second leading factor of human death in the world. Long-term consumption of cooked red meat brings about various types of cancers like colorectal cancer due to the formation of Heterocyclic Aromatic Amines (HAAs) during the heating process of meat. There are various solutions for the reduction of these toxicants. The aim of this article is to describe probiotic as one of the possible strategies for bioremoval of these carcinogenic and mutagenic substances and change food to functional one as well. The mechanism of biodetoxification is binding by probiotics, which depends on some variables including the probiotic characteristics, kind and content of the mutagens, as well as some properties of media. In this article, after introducing detoxification ability of probiotics and listing of all reported probiotics in this field, the influencing variables are surveyed and finally, opportunities and problems of HAA bioremoval by probiotics are described.


Author(s):  
Anis Sabirin Baharom ◽  
Nofri Yenita Dahlan

This paper presents a novel System Dynamics model for solar thermal installed capacity for Malaysian Industries. The objective of this paper is to foresee the influences of technical acceptance and willingness of the Malaysian industries to install the solar thermal system to replace the current system for heating process. Results revealed the Malaysian industries interest level on solar thermal is low. Therefore to increase the interest, Malaysian industries need more booster supports from the government to increase the investment in new technology, which will advantage the company and Malaysia in long-term. Not only industries, the policy makers will also benefit from the outcome, to tailor the framework for solar thermal in developing the solar thermal policy for industries in Malaysia.


2021 ◽  
Author(s):  
Ruichong Chen ◽  
Kazunari Katayama ◽  
Jianqi Qi ◽  
Akito Ipponsugi ◽  
Ran Oyama ◽  
...  

Abstract The development of novel tritium breeding materials was urgently needed in order to continuously optimize the tritium breeding ratio (TBR) of thermonuclear fusion reactors. From this point of view, Li4TiO4-Li2TiO3 core-shell breeding materials with more reasonable structure and theoretical Li density of 0.464 g/cm3 were prepared in this work. Notably, the mass transfer experiment at 900 °C in 1% H2/Ar shows that the theoretical Li density of this core-shell material after heating for 30 days was significantly higher than that of other breeding materials, indicating that it can provide more stable and efficient TBR. Specifically, the Li mass loss of the sample after 30 days heating was 3.4%, resulting in a decrease of Li density to 0.415 g/cm3. The mechanism of Li mass loss in Li4TiO4-Li2TiO3 core-shell breeding materials was investigated in detail. Moreover, the samples did not crack or collapse during the long-term heating process, and always maintained a satisfactory crushing load, revealing that this core-shell breeding ceramic can be used for a long time under severe operating conditions.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Patrice Marques ◽  
Laura Piqueras ◽  
Maria-Jesus Sanz

AbstractThe electronic cigarette (e-cigarette), for many considered as a safe alternative to conventional cigarettes, has revolutionised the tobacco industry in the last decades. In e-cigarettes, tobacco combustion is replaced by e-liquid heating, leading some manufacturers to propose that e-cigarettes have less harmful respiratory effects than tobacco consumption. Other innovative features such as the adjustment of nicotine content and the choice of pleasant flavours have won over many users. Nevertheless, the safety of e-cigarette consumption and its potential as a smoking cessation method remain controversial due to limited evidence. Moreover, it has been reported that the heating process itself can lead to the formation of new decomposition compounds of questionable toxicity. Numerous in vivo and in vitro studies have been performed to better understand the impact of these new inhalable compounds on human health. Results of toxicological analyses suggest that e-cigarettes can be safer than conventional cigarettes, although harmful effects from short-term e-cigarette use have been described. Worryingly, the potential long-term effects of e-cigarette consumption have been scarcely investigated. In this review, we take stock of the main findings in this field and their consequences for human health including coronavirus disease 2019 (COVID-19).


Author(s):  
Jiaxin Wang ◽  
Qiang Lv ◽  
Zhiyin Gan ◽  
Sheng Liu

This paper introduces an innovative method using high-frequency electromagnetic induction heating to realize a partial heating process without increasing overall chip temperature. This method provides an easy and reliable way to solve the long-term problem that has limited carbon nanotube application in mass integrated circuit production. Carbon nanotube alignment and bonding experiments are also conducted and the results are analyzed and discussed. The results show that the resistance of the carbon nanotube–metal interface reduces by 90% after bonding and the contact of the interface exhibits excellent endurance.


Author(s):  
Ana Laura Paez Jerez ◽  
Lilian Davies ◽  
Alvaro Yamil Tesio ◽  
Victoria Flexer

Abstract A ternary compound was synthesized from titanium dioxide, elemental sulfur and polyacrylonitrile throughout a simple ball-milling and heating process in inert atmosphere, and was fully characterized. The novel compound belongs to the family of sulfurized polyacrylonitrile compounds (SPAN) and was incorporated as active material in the cathode of Li-S batteries. The cells achieve high and stable capacity values at 0.5 C reaching 1885 mAh/gS for the 10th cycle and ~1600 mAh/gS after 200 cycles (498 and 422 mAh/g composite, respectively). To the best of our knowledge, we are the first to report the combination of SPAN and TiO2, and to show the synergistic behaviour of these compounds. The high capacity values observed, higher than the theoretical capacity of elemental sulfur (1675 mAh/g), are explained by the extra capacity provided by the lithiation/delithiation process of TiO2. The metallic oxide also improves the overall kinetics of the redox processes in SPAN, which helped to achieve good cycling performance at 3.3 C, with a remaining capacity of 672 mAh/gS after 1400 cycles, and even at 5 C where a remaining capacity of 660 mAh/gS after 500 cycles was recorded.


Sign in / Sign up

Export Citation Format

Share Document