A newly established GDL1 cell line from gpt delta mice well reflects the in vivo mutation spectra induced by mitomycin C

Author(s):  
Akira Takeiri ◽  
Masayuki Mishima ◽  
Kenji Tanaka ◽  
Akifumi Shioda ◽  
Asako Harada ◽  
...  
Mutagenesis ◽  
2019 ◽  
Vol 34 (3) ◽  
pp. 279-287
Author(s):  
Min Gi ◽  
Masaki Fujioka ◽  
Yukari Totsuka ◽  
Michiharu Matsumoto ◽  
Kenichi Masumura ◽  
...  

Abstract Quantitative analysis of the mutagenicity and carcinogenicity of the low doses of genotoxic carcinogens present in food is of pressing concern. The purpose of the present study was to determine the mutagenicity and carcinogenicity of low doses of the dietary genotoxic carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). Male F344 gpt delta transgenic rats were fed diets supplemented with 0, 0.1, 1, 10 or 100 ppm IQ for 4 weeks. The frequencies of gpt transgene mutations in the liver were significantly increased in the 10 and 100 ppm groups. In addition, the mutation spectra was altered in the 1, 10 and 100 ppm groups: frequencies of G:C to T:A transversion were significantly increased in groups administered 1, 10 and 100 ppm IQ in a dose-dependent manner, and the frequencies of G:C to A:T transitions, A:T to T:A transversions and A:T to C:G transversions were significantly increased in the 100 ppm group. Increased frequencies of single base pair deletions and Spi− mutants in the liver, and an increase in glutathione S-transferase placental form (GST-P)-positive foci, a preneoplastic lesion of the liver in rats, was also observed in the 100 ppm group. In contrast, neither mutations nor mutation spectra or GST-P-positive foci were statistically altered by administration of IQ at 0.1 ppm. We estimated the point of departure for the mutagenicity and carcinogenicity of IQ using the no-observed-effect level approach and the Benchmark dose approach to characterise the dose–response relationship of low doses of IQ. Our findings demonstrate the existence of no effect levels of IQ for both in vivo mutagenicity and hepatocarcinogenicity. The findings of the present study will facilitate an understanding of the carcinogenic effects of low doses of IQ and help to determine a margin of exposure that may be useful for practical human risk assessment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1095-1095
Author(s):  
Stacy A. Williams ◽  
James B. Wilson ◽  
Andrei Thomashevski ◽  
Nigel J Jones ◽  
Gary Kupfer

Abstract Abstract 1095 Poster Board I-117 Introduction Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and an increased risk for cancer and leukemia. Components of the FA-BRCA pathway are thought to function in the repair of DNA interstrand crosslinks (ICLs). Central to this pathway is the monoubiquitylation and chromatin localization of two FA proteins, FANCD2 and FANCI. Recent reports implicate mismatch repair factors in the repair of ICLs and have shown that FANCJ interacts with the MutLαa complex. Here we show that FANCD2 binds several mismatch repair proteins in vivo and that MSH2 is required for the monoubiquitylation and chromatin localization of both FANCD2 and FANCI. Methods Cell lines used: HeLa, human lung carcinoma cell line H1299, FA-A cell line GM6914 and corrected cell line GM6914 + Flag-FANCA, FA-D2 cell line PD20 and corrected cell lines PD20+Flag-FANCD2 and PD20+FANCD2 K561R, human endometrial adenocarcinoma cell line HEC59 (MSH2-deficient) and corrected cell line HEC59+Ch2, and human colon carcinoma cell line HCT116 (MLH1-deficient) and corrected cell line HCT116+Ch3. Cells were treated with the crosslinking agent mitomycin C (MMC). Immunoprecipitation was used to demonstrate the interaction between FANCD2 and MSH2, MLH1, and MSH3. Survival assays were performed by crystal violet staining and extraction. Chromatin loading of FANCD2 and FANCI was determined by cellular fractionation and western blot. Results Through chromatographic purification of FANCD2-containing protein complexes, we identified MSH2 and MLH1 as FANCD2-interacting proteins. Immunoprecipitation using HeLa cell extracts confirmed the interaction between FANCD2, MSH2, MSH3, and MLH1 in vivo. These interactions are all induced upon damage with a DNA crosslinking agent and MSH2 specifically interacts only with the monoubiquitylated form of FANCD2. Additionally, the FANCD2-MSH2 interaction requires ATR, but not ATM, BRCA1, MSH3, or ERCC1/XPF. Human cells lacking MSH2 display increased sensitivity to mitomycin C as compared to their corrected counterparts. FANCD2 and FANCI monoubiquitylation is also greatly diminished in these cells, while cells lacking MLH1 show no effect. Cellular fractionation of MSH2-deficient cells shows that FANCD2 and FANCI are not efficiently loaded onto chromatin after treatment with DNA-damaging agents, while MLH1-deficient cells again show no effect. Interestingly, while knockdown of either MSH2 or FANCD2 in H1299 cells results in increased sensitivity to MMC, double knockdown of both proteins corrects this sensitivity on par with controls. oConclusions These data suggest that mismatch repair proteins play a key role in the activation of the FA-BRCA pathway, likely through recognition of the DNA lesion. Understanding this role could lead to the development of new therapies for the treatment of patients both with FA and cancer. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Sylvie Polak-Charcon ◽  
Mehrdad Hekmati ◽  
Yehuda Ben Shaul

The epithelium of normal human colon mucosa “in vivo” exhibits a gradual pattern of differentiation as undifferentiated stem cells from the base of the crypt of “lieberkuhn” rapidly divide, differentiate and migrate toward the free surface. The major differentiated cell type of the intestine observed are: absorptive cells displaying brush border, goblet cells containing mucous granules, Paneth and endocrine cells containing dense secretory granules. These different cell types are also found in the intestine of the 13-14 week old embryo.We present here morphological evidence showing that HT29, an adenocarcinoma of the human colon cell line, can differentiate into various cell types by changing the growth and culture conditions and mimic morphological changes found during development of the intestine in the human embryo.HT29 cells grown in tissue-culture dishes in DMEM and 10% FCS form at late confluence a multilayer of morphologically undifferentiated cell culture covered with irregular microvilli, and devoid of tight junctions (Figs 1-3).


2020 ◽  
Vol 17 ◽  
Author(s):  
Tarek Faris ◽  
Gamaleldin I. Harisa ◽  
Fars K. Alanazi ◽  
Mohamed M. Badran ◽  
Afraa Mohammad Alotaibi ◽  
...  

Aim: This study aimed to explore an affordable technique for the fabrication of Chitosan Nanoshuttles (CSNS) at the ultrafine nanoscale less than 100 nm with improved physicochemical properties, and cytotoxicity on the MCF-7 cell line. Background: Despite several studies reported that the antitumor effect of CS and CSNS could achieve intracellular compartment target ability, no enough available about this issue and further studies are required to address this assumption. Objectives: The objective of the current study was to investigate the potential processing variables for the production of ultrafine CSNS (> 100 nm) using Box-Benhken Design factorial design (BBD). This was achieved through a study of the effects of processing factors, such as CS concentration, CS/TPP ratio, and pH of the CS solution, on PS, PDI, and ZP. Moreover, the obtained CSNS was evaluated for physicochemical characteristics, morphology Also, hemocompatibility, and cytotoxicity using Red Blood Cells (RBCs) and MCF-7 cell lines were investigated. Methods: Box-Benhken Design factorial design (BBD) was used in the analysis of different selected variables. The effects of CS concentration, sodium tripolyphosphate (TPP) ratio, and pH on particle size, Polydispersity Index (PDI), and Zeta Potential (ZP) were measured. Subsequently, the prepared CS nanoshuttles were exposed to stability studies, physicochemical characterization, hemocompatibility, and cytotoxicity using red blood cells and MCF-7 cell lines as surrogate models for in vivo study. Result: The present results revealed that the optimized CSNS have ultrafine nanosize, (78.3±0.22 nm), homogenous with PDI (0.131±0.11), and ZP (31.9±0.25 mV). Moreover, CSNS have a spherical shape, amorphous in structure, and physically stable. Also, CSNS has biological safety as indicated by a gentle effect on red blood cell hemolysis, besides, the obtained nanoshuttles decrease MCF-7 viability. Conclusion: The present findings concluded that the developed ultrafine CSNS has unique properties with enhanced cytotoxicity. thus promising for use in intracellular organelles drug delivery.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2020 ◽  
Vol 21 (20) ◽  
pp. 7520
Author(s):  
Lucky R. Runtuwene ◽  
Shuichi Kawashima ◽  
Victor D. Pijoh ◽  
Josef S. B. Tuda ◽  
Kyoko Hayashida ◽  
...  

Efforts to determine the mosquito genes that affect dengue virus replication have identified a number of candidates that positively or negatively modify amplification in the invertebrate host. We used deep sequencing to compare the differential transcript abundances in Aedes aegypti 14 days post dengue infection to those of uninfected A. aegypti. The gene lethal(2)-essential-for-life [l(2)efl], which encodes a member of the heat shock 20 protein (HSP20) family, was upregulated following dengue virus type 2 (DENV-2) infection in vivo. The transcripts of this gene did not exhibit differential accumulation in mosquitoes exposed to insecticides or pollutants. The induction and overexpression of l(2)efl gene products using poly(I:C) resulted in decreased DENV-2 replication in the cell line. In contrast, the RNAi-mediated suppression of l(2)efl gene products resulted in enhanced DENV-2 replication, but this enhancement occurred only if multiple l(2)efl genes were suppressed. l(2)efl homologs induce the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the fruit fly Drosophila melanogaster, and we confirmed this finding in the cell line. However, the mechanism by which l(2)efl phosphorylates eIF2α remains unclear. We conclude that l(2)efl encodes a potential anti-dengue protein in the vector mosquito.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2311-2320 ◽  
Author(s):  
FM Lemoine ◽  
S Dedhar ◽  
GM Lima ◽  
CJ Eaves

Abstract Marrow stromal elements produce as yet uncharacterized soluble growth factors that can stimulate the proliferation of murine pre-B cells, although close contact between these two cell types appears to ensure a better pre-B cell response. We have now shown that freshly isolated normal pre-B cells (ie, the B220+, surface mu- fraction of adult mouse bone marrow) adhere to fibronectin (FN) via an RGD cell-attachment site, as shown in a serum-free adherence assay, and they lose this functional ability on differentiation in vivo into B cells (ie, the B220+, surface mu+ fraction). Similarly, cells from an immortalized but stromal cell-dependent and nontumorigenic murine pre-B cell line originally derived from a Whitlock-Witte culture were also found to adhere to fibronectin (FN) via an RGD cell-attachment site. Moreover, in the presence of anti-FN receptor antibodies, the ability of this immortalized pre-B cell line to proliferate when co-cultured with a supportive stromal cell line (M2–10B4 cells) was markedly reduced (down to 30% of control). This suggests that pre-B cell attachment to FN on stromal cells may be an important component of the mechanism by which stromal cells stimulate normal pre-B cell proliferation and one that is no longer operative to control their more differentiated progeny. Two differently transformed pre-B cell lines, both of which are autocrine, stromal-independent, tumorigenic in vivo, and partially or completely differentiation-arrested at a very early stage of pre-B cell development, did not bind to FN. In addition, anti-FN receptor antibodies were much less effective in diminishing the ability of these tumorigenic pre-B cells to respond to M2–10B4 cell stimulation, which could still be demonstrated when the tumorigenic pre-B cells were co- cultured with M2–10B4 cells at a sufficiently low cell density. Analysis of cell surface molecules immunoprecipitated from both the nontumorigenic and tumorigenic pre-B cell lines by an anti-FN receptor antibody showed an increase in very late antigen (VLA) alpha chain(s) in both tumorigenic pre-B cell lines and a decrease in the beta 1 chain in one. Interestingly, all of the pre-B cell lines expressed similar amounts of messenger RNA for the beta 1 chain of the FN receptor. These results suggest that alteration of FN receptor expression on pre-B cells may represent a mechanism contributing to the outgrowth of leukemic pre-B cells with an autocrine phenotype and capable of stromal cell-independent, autonomous growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Friedman ◽  
Carmen Corciulo ◽  
Cristina M. Castro ◽  
Bruce N. Cronstein

AbstractAutophagy, a homeostatic pathway upregulated during cellular stress, is decreased in osteoarthritic chondrocytes and this reduction in autophagy is thought to contribute to the development and progression of osteoarthritis (OA). The adenosine A2A receptor (A2AR) is a potent anti-inflammatory receptor and deficiency of this receptor leads to the development of OA in mice. Moreover, treatment using liposomally conjugated adenosine or a specific A2AR agonist improved joint scores significantly in both rats with post-traumatic OA (PTOA) and mice subjected to a high fat diet obesity induced OA. Importantly, A2AR ligation is beneficial for mitochondrial health and metabolism in vitro in primary and the TC28a2 human cell line. An additional set of metabolic, stress-responsive, and homeostatic mediators include the Forkhead box O transcription factors (FoxOs). Data has shown that mouse FoxO knockouts develop early OA with reduced cartilage autophagy, indicating that FoxO-induced homeostasis is important for articular cartilage. Given the apparent similarities between A2AR and FoxO signaling, we tested the hypothesis that A2AR stimulation improves cartilage function through activation of the FoxO proteins leading to increased autophagy in chondrocytes. We analyzed the signaling pathway in the human TC28a2 cell line and corroborated these findings in vivo in a metabolically relevant obesity-induced OA mouse model. We found that A2AR stimulation increases activation and nuclear localization of FoxO1 and FoxO3, promotes an increase in autophagic flux, improves metabolic function in chondrocytes, and reduces markers of apoptosis in vitro and reduced apoptosis by TUNEL assay in vivo. A2AR ligation additionally enhances in vivo activation of FoxO1 and FoxO3 with evidence of enhanced autophagic flux upon injection of the liposome-associated A2AR agonist in a mouse obesity-induced OA model. These findings offer further evidence that A2AR may be an excellent target for promoting chondrocyte and cartilage homeostasis.


Sign in / Sign up

Export Citation Format

Share Document