The matrix–fiber interaction effect on the avalanche breaking in the failure process of composite materials

2020 ◽  
Vol 553 ◽  
pp. 124223 ◽  
Author(s):  
M. Tanasehte ◽  
A. Hader ◽  
I. Achik ◽  
H. Sbiaai ◽  
Y. Boughaleb
2011 ◽  
Vol 311-313 ◽  
pp. 1535-1538 ◽  
Author(s):  
Hong Juan Wang ◽  
Hai Yan Xiao ◽  
Feng Qiang Sun ◽  
Jian Hua Zhang

Novel bio-based composites were developed from maleate castor oil (MACO) and lignin through free radical initiated copolymerization between MACO and diluent monomer styrene(St). The morphology and structure of the composites were characterized by Fourier transform infrared spectroscope (FTIR) and scanning electron microscope (SEM). The mechanical and thermal behaviors of the composites were investigated, which showed the incorporation of a little of lignin in the castor oil based polymer can enhance the tensile properties of the matrix polymer greatly. This work provides a facile route to prepare bio-based composite materials from castor oil and lignin and can be extended to prepare other bio-based materials from reproducible resources.


2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


Author(s):  
I. V. Zlobina

Based on studies of the microstructure of the matrix of cured polymer composite materials and the area of its contact interaction with reinforcing fibers, the hypothesis of its structuring in the microwave electromagnetic field with an increase in the contact interaction surfaces due to an increase in the number of agglomerates with small transverse dimensions and a decrease in porosity in the macro- and mesopore regions is substantiated. These effects can be used as a basis for increasing the strength characteristics and uniformity of their values after exposure to a microwave electromagnetic field. The results of this work can be used in the development of technologies for finishing hardening of products made of carbon and fiberglass for various transport and energy systems.


1992 ◽  
Vol 59 (2S) ◽  
pp. S163-S165 ◽  
Author(s):  
Jin O. Kim ◽  
Haim H. Bau

A novel experimental technique for studying the characteristics of the interface between the fibers and the matrix in both undamaged and damaged fiber-reinforced composite materials is described. The experimental technique involves the transmission of stress waves in one or more fibers of the composite. The characteristics of the stress waves, such as speed, dispersion, and attenuation, are measured. These measured variables can be correlated with the characteristics of the bonding between the fiber and the matrix.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Ding Hualun

This paper chooses magnesium as the matrix of composite materials, selects carbon fi ber as reinforcement, anddesigns the composite scheme according to the structure and performance of Mg-based composites. The performancecharacteristics and application prospect of fiber-reinforced magnesium matrix composites are introduced. Wait. Inthis paper, the process of preparing carbon fi ber magnesium matrix composites by compression casting method andspray deposition method is designed. The process fl ow chart of these two design schemes is determined by analyzingthe principle of these two kinds of preparation methods, and the specifi c problems of the process are analyzed andsummarized.


2011 ◽  
Vol 22 (1) ◽  
pp. 153 ◽  
Author(s):  
Arnaud Delarue ◽  
Dominique Jeulin

Composite materials containing aggregates of spherical inclusions are studied from 3D images obtained by X-ray microtomography. Using two point statistics in different directions, and the empirical distribution of orientations of pairs of inclusions, interesting details concerning the anisotropy of the distribution of inclusions are obtained and are related to the method of construction for these materials. Some 3D morphological properties, available on the 3D images, give new information on the shape and the distribution of aggregates: tortuosity of shortest paths in the matrix, local volume fraction, geodesic distance function, local histograms of numbers of objects.


Author(s):  
V. A. Kalinichenko ◽  
A. S. Kalinichenko ◽  
S. V. Grigoriev

To create friction pairs operating in severe working conditions, composite materials are now increasingly used. Composite materials obtained with the use of casting technologies are of interest due to the possibility to manufacture wide range of compositions at low price compared to powder metallurgy. Despite the fact that many composite materials have been sufficiently studied, it is of interest to develop new areas of application and give them the properties required by the consumer. In the present work the composite materials on the basis of silumin reinforced with copper granules were considered. Attention was paid to the interaction between the matrix alloy and the reinforcing phase material as determining the properties of the composite material. The analysis of distribution of the basic alloying elements in volume of composite material and also in zones of the interphases interaction is carried out. The analysis of the possibility of obtaining a strong interphase zone of contact between the reinforcing component and the matrix material without significant dissolution of the reinforcing material is carried out.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7299
Author(s):  
Alejandro Pereira ◽  
Alberto Tielas ◽  
Teresa Prado ◽  
Maria Fenollera ◽  
José Antonio Pérez

The new requirements in different sectors, such as aerospace, automotive and construction, for lightweight materials have led to an increase in demand for composite materials suitable for use in high rate production processes, such as plastic injection. This makes it necessary to look for matrices and reinforcements that, in addition to being compatible with each other, are also compatible with the injection process. It is in this area of research where the work presented here arises. To meet the two requirements mentioned above, this study contemplates a battery of composite materials obtained by combining PA66 and fiberglass, in different proportions and configuration, both for the preparation of the matrix and for reinforcement. For the elaboration of the matrix, two options have been evaluated, PA66 and PA66 reinforced at 35% with short glass fibre. To obtain reinforcement, six different options have been evaluated; two conventional fiberglass fabrics (each with different density) and four hybrid fabrics obtained from the previous ones by adding PA66 in different configurations (two over-stitched fabrics and two other fabrics). The different composite materials obtained were validated by means of the corresponding adhesion, peeling and resistance tests.


2014 ◽  
Vol 71 ◽  
pp. 30-37 ◽  
Author(s):  
A. Hader ◽  
I. Achik ◽  
A. Lahyani ◽  
K. Sbiaai ◽  
Y. Boughaleb

1999 ◽  
Author(s):  
Y. Schmitt ◽  
C. Paulick ◽  
Y. Bour ◽  
F. X. Royer

Abstract The control of the quality of mixture based on very short carbon fibers and epoxyde resins leads to suitable mixture for molding of complex geometries. A gain in fluidity is obtained if the suspensions are treated by ultrasounds and simultaneously stirred under vacuum. Addition in a very small ratio of microbubbles in the mixture allows to obtain a viscosity less than those of the matrix alone. For many polymer materials the gain of fluidity can be of 20 to 25% with size and concentration of the microspheres thoroughly chosen. A certain number of new resins is developped to elaborate composite materials with specific mechanical properties close to standard aluminium. Tensile test an ultimate stress are used to quantify the improvements of the mechanical properties. Fillers concentrations up to 30 % are obtained.


Sign in / Sign up

Export Citation Format

Share Document