scholarly journals Ag/graphene composite based on high-quality graphene with high electrical and mechanical properties

2019 ◽  
Vol 29 (4) ◽  
pp. 384-389 ◽  
Author(s):  
Yanpeng Yang ◽  
Yunjie Ping ◽  
Youning Gong ◽  
Zhongchi Wang ◽  
Qiang Fu ◽  
...  
2012 ◽  
Vol 628 ◽  
pp. 482-485
Author(s):  
Yulia A. Lukina ◽  
Andrey V. Stepanov ◽  
Evgeny N. Bobrov

The paper deals with manufacturing technology for the forged rolls and sleeves from adamite steel at Electrostal Plant of Heavy Machinery (JSC «EZTM»). The influence of different heat treatments on microstructure and mechanical properties of the level of adamite steel is presented.


2014 ◽  
Vol 217-218 ◽  
pp. 332-339 ◽  
Author(s):  
Xiao Kang Liang ◽  
Da Quan Li ◽  
Pascal Côté ◽  
Stephen P. Midson ◽  
Qiang Zhu

The spheroidal grains in billets used for semi-solid casting are generally manufactured by electromagnetic stirring (EMS) during the casting process. This method however, is not economically applicable for small quantities of the thixo billets. Swirled Enthalpy Equilibration Device (SEED) has been developed as a rheocasting process, and the SEED process is of interest for developing new thixo alloys, as well as for optimizing the thixocasting processes for high quality components. The objective of this paper is to compare the microstructure and mechanical properties of aluminum alloy 319s billets and castings produced using EMS and SEED feed materials. The experimental results show that for as-cast billets made from SEED process, a well-developed spheroidal grain structure is distributed throughout the cross-section of the billet, while for as-cast EMS billets, the grain structure is inhomogeneous, i.e., a dendritic structure was present adjacent to the surface of the billet, while a uniform, spheroidal structure was present at the centre. After the thixocasting process, however, the both SEED and EMS billets have well-developed, spheroidal grain structures. Mechanical properties of thixocast and T61 heat treated components are comparable for the both SEED and EMS billets.


2019 ◽  
Vol 9 (3) ◽  
pp. 534 ◽  
Author(s):  
Chihiro Iwamoto ◽  
Keisuke Yamauchi ◽  
Kazuki Motomura ◽  
Yoichi Hashimoto ◽  
Kensuke Hamada

In order to improvement electronic and mechanical properties, welding between stranded wires and terminals is important. However, welding methods to obtain high-quality joints using stranded wires are still limited. In this report, we applied ultrasonic welding to join a Cu stranded wire to a Cu substrate. Cross-sections of the weldments were taken and observed by several microscopy techniques to elucidate the weldability and soundness of the joints. After ultrasonic welding, each wire in the stranded wire was joined together at the region where the stranded wire was joined to the substrate without any defect. Each wire was welded through the Ag coating layer, and the stranded wire and the substrate was also welded through the outermost coating layers. It was found that ultrasonic welding is an efficient technique for producing high quality joints without any defect at the interface.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 84
Author(s):  
Marcin Ziółkowski ◽  
Tomasz Dyl

3D printing conquers new branches of production due to becoming a more reliable and professional method of manufacturing. The benefits of additive manufacturing such as part optimization, weight reduction, and ease of prototyping were factors accelerating the popularity of 3D printing. Additive manufacturing has found its niches, inter alia, in automotive, aerospace and dentistry. Although further research in those branches is still required, in some specific applications, additive manufacturing (AM) can be beneficial. It has been proven that additively manufactured parts have the potential to out perform the conventionally manufactured parts due to their mechanical properties; however, they must be designed for specific 3D printing technology, taking into account its limitations. The maritime industry has a long-standing tradition and is based on old, reliable techniques; therefore it implements new solutions very carefully. Besides, shipbuilding has to face very high classification requirements that force the use of technologies that guarantee repeatability and high quality. This paper provides information about current R&D works in the field of implementing AM in shipbuilding, possible benefits, opportunities and threats of implementation.


2007 ◽  
Vol 546-549 ◽  
pp. 399-402
Author(s):  
Qi Chi Le ◽  
Zi Qiang Zhang ◽  
Jian Zhong Cui

A novel way producing magnesium billets, LFEC (low frequency electromagnetic casting processing), was developed in Northeastern University in China. The high-quality magnesium billets with less macrosegregation, refined microstructure, and better surface quality were achieved because the temperature field and the flow pattern of magnesium DC casting were improved significantly after applying low frequency electromagnetic field. Extrusion is an important plastic deformation process for magnesium alloys. In this research, the magnesium billets from LFEC were extruded through a special designed die into sheets. The results of investigation on AZ31B indicated that the extrusion velocity has obvious effects on their microstructures and mechanical properties and the sheets from LFEC had finer microstructure and higher mechanical properties than that from conventional DC casting.


Author(s):  
R. Manivel ◽  
R. Shanmuga Prakash

Railways provide a long and continuous journey for passengers and goods at an affordable cost. The rails and rail joints should be of high quality to ensure a safer transportation of people and goods. The tracks (rail) are made of alloys of iron and are fastened to other rails using fasteners. Nowadays, these fasteners are replaced with welded joints because of rising maintenance issues. Thermite welding is a globally adopted process for welding the rails. This article aims to best utilise the Aluminium composites for the welding of rails. The composites were prepared using stir casting route and a wear test was done on the casted samples to test their durability. Also, some of the mechanical properties of the composite material were found. The rail and track models were made and imported into ANSYS Finite Element Analysis software. The predicted results show that aluminium composites have considerable strength when compared to any other composite material.


2008 ◽  
Vol 481-482 ◽  
pp. 630-634 ◽  
Author(s):  
Juliane Mentz ◽  
Martin Bram ◽  
Hans Peter Buchkremer ◽  
Detlev Stöver

2008 ◽  
Vol 591-593 ◽  
pp. 218-222
Author(s):  
Magna Monteiro Schaerer ◽  
Deane Roehl ◽  
José Luís Silveira

Powder consolidation constitutes an important step in the manufacture of products of high quality and precision. To obtain these components, with desired forms and final mechanical properties, it is of extreme importance to have knowledge about the processes to obtain powders, compacting and sintering. The objective of this work is to verify which model, obtained from the literature, better describes the compaction densification behavior of iron powder in closed-die. Doraivelu’s criterion was carried through the method of the finite elements with the implementation of an elastoplastic model with hardening. The influence of the yield function coefficient against the relative density was evaluated, as well as, the yield function in the hydrostatic space.


2014 ◽  
Vol 105 (13) ◽  
pp. 131911 ◽  
Author(s):  
Michael Kanik ◽  
Punnathat Bordeenithikasem ◽  
Golden Kumar ◽  
Emily Kinser ◽  
Jan Schroers

2019 ◽  
pp. 305-310
Author(s):  
Ivan Nikolaevich Koverninskij

The article provides material on the study of chemical-thermomechanical pulp (CTMM) from poplar wood, produced by the Chinese company WeifangderuibioloDgical TECHNOLODGY CO., LTD. As a result of the research, it was established that CTMP of poplar wood has the ability to be easily milled with a significant increase (by 30–80%) of physical and mechanical properties. The interval of the possible degree of grinding, in which the mass can be used with the greatest efficiency, is recommended 30–50 °SR. CTMM in unbleached form is a high-quality primary semi-finished fibrous material that can be effectively used in combination with waste fiber for the production of corrugated paper and cardboard for flat layers of corrugated cardboard (test liner). Adding weight to the composition is appropriate in the range of 20–50%. CTMM in bleached form is a high-quality primary fiber for the production of base paper for various sanitary purposes. Compositions with bleached cellulose, in which cellulose should be added within 15–20%, will differ in high efficiency in imparting properties to paper. When using coniferous sapwood (pine, larch), a characteristic large-tonnage waste of Russian enterprises, an increase in the mechanical properties of the mass is expected by 20–30%. Such a mass will be a significant factor in the development of the production of containerboard, sanitary and hygienic, as well as other types of paper and cardboard. The CTMM technology offered by the Chinese company WeifangderuibioloDgical TECHNOLODGY CO., LTD is recommended for use by Russian timber merchants. In terms of its importance, the technology is capable of solving the tasks of developing the production of pulp, paper and cardboard, provided for in the Strategy for the Development of the Forest Complex of Russia until 2030.


Sign in / Sign up

Export Citation Format

Share Document