scholarly journals Microstructure of Joint between Stranded Wire and Substrate Welded by Ultrasonic Welding

2019 ◽  
Vol 9 (3) ◽  
pp. 534 ◽  
Author(s):  
Chihiro Iwamoto ◽  
Keisuke Yamauchi ◽  
Kazuki Motomura ◽  
Yoichi Hashimoto ◽  
Kensuke Hamada

In order to improvement electronic and mechanical properties, welding between stranded wires and terminals is important. However, welding methods to obtain high-quality joints using stranded wires are still limited. In this report, we applied ultrasonic welding to join a Cu stranded wire to a Cu substrate. Cross-sections of the weldments were taken and observed by several microscopy techniques to elucidate the weldability and soundness of the joints. After ultrasonic welding, each wire in the stranded wire was joined together at the region where the stranded wire was joined to the substrate without any defect. Each wire was welded through the Ag coating layer, and the stranded wire and the substrate was also welded through the outermost coating layers. It was found that ultrasonic welding is an efficient technique for producing high quality joints without any defect at the interface.

2005 ◽  
Vol 297-300 ◽  
pp. 2266-2271
Author(s):  
Jine Sung Jung ◽  
S.Y. Chang ◽  
Keun Bong Yoo ◽  
Gee Wook Song ◽  
Min Sung Kang ◽  
...  

Degradation of the gas turbine hot-gas-path components, the 1st stage blades and vanes, serviced for a period was evaluated by measuring the mechanical properties. For this, tensile and impact tests on these gas turbine parts were performed. Microstructure of the substrate and coating layers were also observed. The mechanical properties of the serviced blades were degraded by about 30% comparing with those of unused ones. In terms of the microstructure, the dissolution of the secondary g’ phase and subsequent coarsening of precipitates were observed in the substrate. And the interdiffusion zone near the coating layer was disappeared.


Holzforschung ◽  
2019 ◽  
Vol 73 (9) ◽  
pp. 871-877 ◽  
Author(s):  
Yan Wu ◽  
Jiamin Wu ◽  
Siqun Wang ◽  
Xinhao Feng ◽  
Hong Chen ◽  
...  

AbstractWaterborne coatings are widely used for environmental protection. However, they lead to many defects and lower the mechanical properties when applied to wood surfaces. To address this challenge, the effects of multilayer waterborne polycrylic coatings on the mechanical properties of southern pine cell walls were investigated by nanoindentation. The experimental results indicated that the coating layers significantly reduced the elastic modulus (Er) and hardness (H) values than the wood cell walls. TheErandHvalues measured along the coating layer thickness direction increased significantly as the distance of the indents to the wood surface decreased. Intact cell walls adjacent to or away from the coating layers had higherErandHvalues than partial ones. This study will also be useful in helping to understand the bonding mechanism at the interface between coatings and wood cell walls.


2020 ◽  
Vol 14 (1) ◽  
pp. 6504-6513
Author(s):  
M. A. A. Afripin ◽  
N. A. Fadil ◽  
M. Nasir Tamin

The mechanical properties of the thin sputtered copper layer on the SiO2-coated silicon substrate is needed as part of the requirements in quantifying the reliability of the Through-Silicon Via (TSV) interconnects. In this respect, two different Cu coating layers, each from the different sputtering process, are examined. A series of nanoindentation tests are performed on the Cu coating layer samples with indenter speeds ranging from 80 to 400 nm/s, and the indentation depths of 320 nm. The properties of elastic modulus, hardness and the hardening behavior of the Cu coating layers have been quantified. Results show that the coating with higher contamination of C at 8.41 wt. % displays a significant hardening and a peak load level, as reflected in the measured nanoindentation load-displacement curves. However, insignificant effect of the applied probe displacement speeds up to 400 nm/s on the resulting properties of the coating is registered. The Johnson-Cook constitutive equation adequately describes the strain rate-dependent hardening behavior of the Cu coating layer.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 93-99
Author(s):  
SEYYED MOHAMMAD HASHEMI NAJAFI ◽  
DOUGLAS BOUSFIELD, ◽  
MEHDI TAJVIDI

Cracking at the fold of publication and packaging paper grades is a serious problem that can lead to rejection of product. Recent work has revealed some basic mechanisms and the influence of various parameters on the extent of crack area, but no studies are reported using coating layers with known mechanical properties, especially for double-coated systems. In this study, coating layers with different and known mechanical properties were used to characterize crack formation during folding. The coating formulations were applied on two different basis weight papers, and the coated papers were folded. The binder systems in these formulations were different combinations of a styrene-butadiene latex and mixtures of latex and starch for two different pigment volume concentrations (PVC). Both types of papers were coated with single and double layers. The folded area was scanned with a high-resolution scanner while the samples were kept at their folded angle. The scanned images were analyzed within a constant area. The crack areas were reported for different types of papers, binder system and PVC values. As PVC, starch content, and paper basis weight increased, the crack area increased. Double layer coated papers with high PVC and high starch content at the top layer had more cracks in comparison with a single layer coated paper, but when the PVC of the top layer was low, cracking area decreased. No measurable cracking was observed when the top layer was formulated with a 100% latex layer.


2017 ◽  
Vol 742 ◽  
pp. 395-400 ◽  
Author(s):  
Florian Staab ◽  
Frank Balle ◽  
Johannes Born

Multi-material-design offers high potential for weight saving and optimization of engineering structures but inherits challenges as well, especially robust joining methods and long-term properties of hybrid structures. The application of joining techniques like ultrasonic welding allows a very efficient design of multi-material-components to enable further use of material specific advantages and are superior concerning mechanical properties.The Institute of Materials Science and Engineering of the University of Kaiserslautern (WKK) has a long-time experience on ultrasonic welding of dissimilar materials, for example different kinds of CFRP, light metals, steels or even glasses and ceramics. The mechanical properties are mostly optimized by using ideal process parameters, determined through statistical test planning methods.This gained knowledge is now to be transferred to application in aviation industry in cooperation with CTC GmbH and Airbus Operations GmbH. Therefore aircraft-related materials are joined by ultrasonic welding. The applied process parameters are recorded and analyzed in detail to be interlinked with the resulting mechanical properties of the hybrid joints. Aircraft derived multi-material demonstrators will be designed, manufactured and characterized with respect to their monotonic and fatigue properties as well as their resistance to aging.


2021 ◽  
pp. 002199832097681
Author(s):  
F Köhler ◽  
IF Villegas ◽  
C Dransfeld ◽  
A Herrmann

Ultrasonic welding is a promising technology to join fibre-reinforced thermoplastic composites. While current studies are mostly limited to fabric materials the applicability to unidirectional materials, as found in aerospace structures, would offer opportunities for joining primary aircraft structures. However, due to the highly anisotropic flow of a molten unidirectional ply undesired squeeze flow phenomena can occur at the edges of the weld overlap. This paper investigates how the fibre orientation in the plies adjacent to the weld line influences the welding process and the appearance of edge defects. Ultrasonic welding experiments with different layups and energy director configurations were carried out while monitoring temperatures at different locations inside and outside the weld overlap. The joints were characterized by single lap shear tests, analysis of corresponding fracture surfaces and microscopic cross-sections. Results showed that the anisotropic flow and the anisotropic thermal conductivity of the plies adjacent to the weld line have a distinct effect on the appearance and location of edge defects. By using energy directors that cover only part of the weld overlap area a new approach was developed to mitigate edge defects caused by the highly directional properties of the unidirectional plies.


2010 ◽  
Vol 638-642 ◽  
pp. 675-680 ◽  
Author(s):  
Martina Thomann ◽  
Nina von der Höh ◽  
Dirk Bormann ◽  
Dina Rittershaus ◽  
C. Krause ◽  
...  

Current research focuses on magnesium based alloys in the course of searching a resorbable osteosynthetic material which provides sufficient mechanical properties besides a good biocompatibility. Previous studies reported on a favorable biocompatibility of the alloys LAE442 and MgCa0.8. The present study compared the degradation process of cylindrical LAE442 and MgCa0.8 implants after 12 months implantation duration. Therefore, 10 extruded implants (2.5 x 25 mm, cross sectional area 4.9 mm²) of both alloys were implanted into the medullary cavity of both tibiae of rabbits for 12 months. After euthanization, the right bone-implant-compound was scanned in a µ-computed tomograph (µCT80, ScancoMedical) and nine uniformly distributed cross-sections of each implant were used to determine the residual implants´ cross sectional area (Software AxioVisionRelease 4.5, Zeiss). Left implants were taken out of the bone carefully. After weighing, a three-point bending test was carried out. LAE442 implants degraded obviously slower and more homogeneously than MgCa0.8. The mean residual cross sectional area of LAE442 implants was 4.7 ± 0.07 mm². MgCa0.8 showed an area of only 2.18 ± 1.03 mm². In contrast, the loss in volume of LAE442 pins was more obvious. They lost 64 % of their initial weight. The volume of MgCa0.8 reduced clearly to 54.4 % which corresponds to the cross sectional area results. Three point bending tests revealed that LAE442 showed a loss in strength of 71.2 % while MgCa0.8 lost 85.6 % of its initial strength. All results indicated that LAE442 implants degraded slowly, probably due to the formation of a very obvious degradation layer. Degradation of MgCa0.8 implants was far advanced.


2012 ◽  
Vol 628 ◽  
pp. 482-485
Author(s):  
Yulia A. Lukina ◽  
Andrey V. Stepanov ◽  
Evgeny N. Bobrov

The paper deals with manufacturing technology for the forged rolls and sleeves from adamite steel at Electrostal Plant of Heavy Machinery (JSC «EZTM»). The influence of different heat treatments on microstructure and mechanical properties of the level of adamite steel is presented.


2021 ◽  
pp. 002199832110492
Author(s):  
Ruidong Man ◽  
Jianhui Fu ◽  
Songkil Kim ◽  
Yoongho Jung

As a connecting component of tubes, the elbow is indispensable to pipe-fitting in composite products. Previous studies have addressed methods for generating winding paths based on parametric equations on the elbow. However, these methods are unsuitable for elbows whose surfaces are difficult to describe using mathematical expressions. In this study, a geometric method was proposed for generating winding patterns for various elbow types. With this method, the mandrel surface is first converted into uniform and high-quality quadrilateral elements; an algorithm is then provided for calculating the minimum winding angle for bridging-free. Next, an angle for non-bridging was defined as the design-winding angle to generate the uniform and slippage-free basic winding paths on the quadrilateral elements in non-geodesic directions. Finally, after a series of uniform points were calculated on the selected vertical edge according to the elbow type, the pattern paths were generated with the uniform points and basic paths. The proposed method is advantageously not limited to the elbow’s shape.


2007 ◽  
Vol 62 (9) ◽  
pp. 545-548
Author(s):  
Adnan Calik ◽  
Osman Sahin ◽  
Ali Ercan Ekinci ◽  
Nazim Ucar

Fe-0.94%Mn alloys were boronized at 1210 K during 4 h by the powder pack method. Three distinct regions of cross-sections were found in such alloys. The boride layers were characterized by means of microscopy in terms of coating morphology and thickness. The hardness and thickness of the boride layers were measured, and it was observed that they depend strongly on the thermal processes performed before boronizing the alloys.


Sign in / Sign up

Export Citation Format

Share Document