Insights into molecular pathways and fatty acid membrane composition during the temperature stress response in the murine C2C12 cell model

Author(s):  
Marua Abu Risha ◽  
Asghar Ali ◽  
Puntita Siengdee ◽  
Nares Trakooljul ◽  
Dirk Dannenberger ◽  
...  
Author(s):  
SJ Cañas-Duarte ◽  
MI Perez-Lopez ◽  
C Herrfurth ◽  
Lei Sun ◽  
LM Contreras ◽  
...  

SummaryIn spite of its medical importance, the genetic mechanisms of bacterial persistence, particularly spontaneous (type II) persistence, remain largely unknown. We use an integrative approach, combining mutant genome analysis, transcriptomics and lipid membrane composition analysis, to elucidate said mechanisms. In particular, we analyzed the genome of the high persistence mutant E. coli DS1 (hipQ), to identify candidate mutations responsible for the high persistence phenotype. Contrary to a recent study, we find no mutation in ydcI. We compared the expression of spontaneous persistent and growing cells using RNAseq, and find that the activation of stress response mechanisms is likely less important in spontaneous persistence than recent reports suggest. It also indicated that modifications in the cell membrane could play an important role. This hypothesis was then validated by the analysis of the fatty acid composition of persister cells of both types, which have markedly different saturation from growing cells and between each other. Taken together, our results indicate that changing membrane composition might be a key process in persistence.HighlightsRNAseq analysis of spontaneous persistence shows no evidence of stress responseIdentification of candidate SNPs for hipQ phenotype, excludes ydcIMembrane fatty acid composition is involved in both types of bacterial persistence


Author(s):  
Alexander Flegler ◽  
Vanessa Kombeitz ◽  
André Lipski

AbstractListeria monocytogenes is a food-borne pathogen with the ability to grow at low temperatures down to − 0.4 °C. Maintaining cytoplasmic membrane fluidity by changing the lipid membrane composition is important during growth at low temperatures. In Listeria monocytogenes, the dominant adaptation effect is the fluidization of the membrane by shortening of fatty acid chain length. In some strains, however, an additional response is the increase in menaquinone content during growth at low temperatures. The increase of this neutral lipid leads to fluidization of the membrane and thus represents a mechanism that is complementary to the fatty acid-mediated modification of membrane fluidity. This study demonstrated that the reduction of menaquinone content for Listeria monocytogenes strains resulted in significantly lower resistance to temperature stress and lower growth rates compared to unaffected control cultures after growth at 6 °C. Menaquinone content was reduced by supplementation with aromatic amino acids, which led to a feedback inhibition of the menaquinone synthesis. Menaquinone-reduced Listeria monocytogenes strains showed reduced bacterial cell fitness. This confirmed the adaptive function of menaquinones for growth at low temperatures of this pathogen.


Nephron ◽  
1997 ◽  
Vol 78 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Kurt J. Henle ◽  
Sunita M. Jethmalani ◽  
Greg T. Nolen ◽  
Sho-Ya Wang ◽  
Grazyna Nowak ◽  
...  

2003 ◽  
Vol 69 (2) ◽  
pp. 1287-1289 ◽  
Author(s):  
Mario Varcamonti ◽  
Maria R. Graziano ◽  
Romilde Pezzopane ◽  
Gino Naclerio ◽  
Slavica Arsenijevic ◽  
...  

ABSTRACT An insertional deoD mutant of Streptococcus thermophilus strain SFi39 had a reduced growth rate at 20°C and an enhanced survival capacity to heat shock compared to the wild type, indicating that the deoD product is involved in temperature shock adaptation. We report evidence that ppGpp is implicated in this dual response.


2018 ◽  
Vol 16 ◽  
pp. 205873921876205
Author(s):  
Yong Liu ◽  
Guohui Wang ◽  
Xiangwu Yang ◽  
Pengzhou Li ◽  
Hao Ling ◽  
...  

Type 2 diabetes mellitus (T2DM) is associated with insulin resistance-induced lipid and glucose metabolism disorder. The study was aimed to explore the potential functional role of microRNA (miR)-27b-3p in T2DM, as well as underlying mechanisms. An insulin resistance cell model was induced in HepG2 cells and then expression of miR-27b-3p and receptor tyrosine kinase-like orphan receptor 1 (ROR1) was analyzed. The expression of miR-27b-3p was overexpressed or silenced, and the relationship between ROR1 and miR-27b-3p was investigated. Thereafter, the effects of miR-27b-3p on percentage of glucose uptake, fatty acid oxidation and cell cycle were analyzed. The expressions of miR-27b-3p were significantly increased, while the ROR1 levels were statistically decreased in the cells of the model group. Overexpression of miR-27b-3p dramatically decreased the levels of ROR1 and the percentage of glucose uptake, but had no effects on fatty acid oxidation. ROR1 was a target of miR-27b-3p. Moreover, overexpression of miR-27b-3p could remarkably highlight the percentages of cells at G0/G1 phase, but decreased the percentages of cells at S phase. In conclusion, our results suggest that miR-27b-3p regulates the function and metabolism of insulin resistance cells by inhibiting ROR1. miR-27b-3p might be a potential drug target in treating T2DM.


2021 ◽  
Author(s):  
Yulan Shi ◽  
Sizhong Yang ◽  
Xiule Yue ◽  
Zhixing Zhao ◽  
Lizhe An

Abstract To explore the contribution of ω-3 fatty acid desaturases (FADs) to cold stress response in a special cryophyte, Chorispora bungeana (C. bungeana), two plastidial ω-3 FAD genes (CbFAD7 and CbFAD8) were cloned and verified in a Arabidopsis fad7fad8 mutant, before being compared with the microsomal ω-3 FAD gene (CbFAD3) on expression profile. Though these genes were expressed in all tested tissues of C. bungeana, CbFAD7 and CbFAD8 have the highest expression in leaves, while CbFAD3 was mostly expressed in non-green tissues. Low temperatures (4, 0 and -4 ℃) resulted in significant increases in trienoic fatty acids (TAs, mainly C18:3), which were consistent with the non-redundant expression of CbFAD3 and CbFAD8 in suspension-cultured cells, and the coordination of CbFAD7 and CbFAD8 in leaves. Furthermore, the contribution of CbFAD8 increased as temperature decrease in the two tissues. Our data revealed that jasmonie acid and brassinosteroids participated in the cold-responsive expression of these genes in both tissues, and the pyhtohormone regulation in leaves was more complicated with the participation of abscisic acid and gibberellin. These results point to the hormone-regulated non-redundant contribution of ω-3 CbFADs to maintain appropriate level of TAs under low temperatures, which help C. bungeana survive in cold environments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruiwen Wang ◽  
Zhecheng Wang ◽  
Ruimin Sun ◽  
Rong Fu ◽  
Yu Sun ◽  
...  

Fatty acid β-oxidation is an essential pathogenic mechanism in nonalcoholic fatty liver disease (NAFLD), and TATA-box binding protein associated factor 9 (TAF9) has been reported to be involved in the regulation of fatty acid β-oxidation. However, the function of TAF9 in NAFLD, as well as the mechanism by which TAF9 is regulated, remains unclear. In this study, we aimed to investigate the signaling mechanism underlying the involvement of TAF9 in NAFLD and the protective effect of the natural phenolic compound Danshensu (DSS) against NAFLD via the HDAC1/TAF9 pathway. An in vivo model of high-fat diet (HFD)-induced NAFLD and a palmitic acid (PA)-treated AML-12 cell model were developed. Pharmacological treatment with DSS significantly increased fatty acid β-oxidation and reduced lipid droplet (LD) accumulation in NAFLD. TAF9 overexpression had the same effects on these processes both in vivo and in vitro. Interestingly, the protective effect of DSS was markedly blocked by TAF9 knockdown. Mechanistically, TAF9 was shown to be deacetylated by HDAC1, which regulates the capacity of TAF9 to mediate fatty acid β-oxidation and LD accumulation during NAFLD. In conclusion, TAF9 is a key regulator in the treatment of NAFLD that acts by increasing fatty acid β-oxidation and reducing LD accumulation, and DSS confers protection against NAFLD through the HDAC1/TAF9 pathway.


1988 ◽  
Vol 253 (2) ◽  
pp. 417-424 ◽  
Author(s):  
C J Field ◽  
E A Ryan ◽  
A B Thomson ◽  
M T Clandinin

Control and diabetic rats were fed on semi-purified high-fat diets providing a polyunsaturated/saturated fatty acid ratio (P/S) of 1.0 or 0.25, to examine the effect of diet on the fatty acid composition of major phospholipids of the adipocyte plasma membrane. Feeding the high-P/S diet (P/S = 1.0) compared with the low-P/S diet (P/S = 0.25) increased the content of polyunsaturated fatty acids in membrane phospholipids in both control and diabetic animals. The diabetic state decreased the content of polyunsaturated fatty acids, particularly arachidonic acid, in adipocyte membrane phospholipids. The decrease in arachidonic acid in membrane phospholipids of diabetic animals tended to be normalized to within the control values when high-P/S diets were given. For control animals, altered plasma-membrane composition was associated with change in insulin binding, suggesting that change in plasma-membrane composition may have physiological consequences for insulin-stimulated functions in the adipocyte.


2004 ◽  
Vol 21 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Shinji Hama ◽  
Hideki Yamaji ◽  
Masaru Kaieda ◽  
Mitsuhiro Oda ◽  
Akihiko Kondo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document