Experimental study of the variations in the electromechanical properties of piezoelectric energy harvesters and their impact on the frequency response function

2019 ◽  
Vol 115 ◽  
pp. 469-482 ◽  
Author(s):  
Patricio Peralta ◽  
Rafael O. Ruiz ◽  
Viviana Meruane
Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 220 ◽  
Author(s):  
Jilin Hou ◽  
Pengfei Wang ◽  
Tianyu Jing ◽  
Łukasz Jankowski

This research proposes a damage identification approach for storage tanks that is based on adding virtual masses. First, the frequency response function of a structure with additional virtual masses is deduced based on the Virtual Distortion Method (VDM). Subsequently, a Finite Element (FE) model of a storage tank is established to verify the proposed method; the relation between the added virtual masses and the sensitivity of the virtual structure is analyzed to determine the optimal mass and the corresponding frequency with the highest sensitivity with respect to potential damages. Thereupon, the damage can be localized and quantified by comparing the damage factors of substructures. Finally, an experimental study is conducted on a storage tank. The results confirm that the proposed method is feasible and practical, and that it can be applied for damage identification of storage tanks.


Author(s):  
Yu Chen ◽  
Zhichun Yang ◽  
Zhaolin Chen ◽  
Kui Li ◽  
Shengxi Zhou

A multi-bifurcated cantilever piezoelectric energy harvester (BCPEH) is designed and verified to achieve a wide and adjustable response frequency band. The theoretical model is derived based on the Euler-Bernoulli beam theory and continuity boundary conditions to investigate the dynamic response of the BCPEH. The displacement frequency response function and the voltage frequency response function of the BCPEH are deduced based on the Galerkin method, and the theoretical results of a typical multi-bifurcated cantilever piezoelectric energy harvester, the Y-shaped BCPEH, are verified by the finite element method (FEM) and experiments. In addition, by comparing experimental output power of the Y-shaped BCPEH with that of the traditional cantilever-based piezoelectric energy harvester with the same mass of the bifurcated part at the beam-tip, it demonstrates that the Y-shaped BCPEH has a wider operational frequency band. Moreover, it is found that the Y-shaped BCPEH can be designed with an asymmetric configuration to adjust its response frequency distribution. The number of resonant frequencies and the output power of the asymmetric Y-shaped BCPEH are higher than that of the symmetric Y-shaped BCPEH. And the Y-shaped BCPEH has even better performance than L-shaped BCPEH. This study provides a new design concept for enhanced energy harvester.


Author(s):  
Sai Tej Paruchuri ◽  
Andrew Kurdila ◽  
Joseph Vignola

Subordinate Oscillator Arrays (SOAs) have been shown to be effective methods for band-limited vibration attenuation. However, SOAs are very sensitive to error in parameter distributions. Slight disorder in structural parameters can render an SOA ineffective. Recent research has shown that Piezoelectric SOAs (PSOAs) provide an alternative that can limit the degradation of the frequency response function due to the disorder. The capacitive shunts attached to such SOAs can be tuned to change overall electromechanical properties of the SOA post-fabrication. The conventional methods of tuning, which study the Frequency Response Function (FRF) of each oscillator in the array, can be an extremely time-consuming process. To apply a systematic approach to tuning, an estimate of the disorder in structural property distributions can be crucial. In this paper, we discuss a simple and effective methodology to estimate the actual structural parameters and subsequently tune the PSOA to ameliorate the effect of disorder. We derive an adaptive estimation technique for PSOAs and present numerical results that demonstrate improved vibration attenuation of this approach.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 89
Author(s):  
Qingxia Zhang ◽  
Jilin Hou ◽  
Zhongdong Duan ◽  
Łukasz Jankowski ◽  
Xiaoyang Hu

Road roughness is an important factor in road network maintenance and ride quality. This paper proposes a road-roughness estimation method using the frequency response function (FRF) of a vehicle. First, based on the motion equation of the vehicle and the time shift property of the Fourier transform, the vehicle FRF with respect to the displacements of vehicle–road contact points, which describes the relationship between the measured response and road roughness, is deduced and simplified. The key to road roughness estimation is the vehicle FRF, which can be estimated directly using the measured response and the designed shape of the road based on the least-squares method. To eliminate the singular data in the estimated FRF, the shape function method was employed to improve the local curve of the FRF. Moreover, the road roughness can be estimated online by combining the estimated roughness in the overlapping time periods. Finally, a half-car model was used to numerically validate the proposed methods of road roughness estimation. Driving tests of a vehicle passing over a known-sized hump were designed to estimate the vehicle FRF, and the simulated vehicle accelerations were taken as the measured responses considering a 5% Gaussian white noise. Based on the directly estimated vehicle FRF and updated FRF, the road roughness estimation, which considers the influence of the sensors and quantity of measured data at different vehicle speeds, is discussed and compared. The results show that road roughness can be estimated using the proposed method with acceptable accuracy and robustness.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 144
Author(s):  
Yan Zhang ◽  
Jijian Lian ◽  
Songhui Li ◽  
Yanbing Zhao ◽  
Guoxin Zhang ◽  
...  

Ground vibrations induced by large flood discharge from a dam can damage surrounding buildings and impact the quality of life of local residents. If ground vibrations could be predicted during flood discharge, the ground vibration intensity could be mitigated by controlling or tuning the discharge conditions by, for example, changing the flow rate, changing the opening method of the orifice, and changing the upstream or downstream water level, thereby effectively preventing damage. This study proposes a prediction method with a modified frequency response function (FRF) and applies it to the in situ measured data of Xiangjiaba Dam. A multiple averaged power spectrum FRF (MP-FRF) is derived by analyzing four major factors when the FRF is used: noise, system nonlinearity, spectral leakages, and signal latency. The effects of the two types of vibration source as input are quantified. The impact of noise on the predicted amplitude is corrected based on the characteristics of the measured signal. The proposed method involves four steps: signal denoising, MP-FRF estimation, vibration prediction, and noise correction. The results show that when the vibration source and ground vibrations are broadband signals and two or more bands with relative high energies, the frequency distribution of ground vibration can be predicted with MP-FRF by filtering both the input and output. The amplitude prediction loss caused by filtering can be corrected by adding a constructed white noise signal to the prediction result. Compared with using the signal at multiple vibration sources after superimposed as input, using the main source as input improves the accuracy of the predicted frequency distribution. The proposed method can predict the dominant frequency and the frequency bands with relative high energies of the ground vibration downstream of Xiangjiaba Dam. The predicted amplitude error is 9.26%.


2020 ◽  
Vol 36 (6) ◽  
pp. 867-879
Author(s):  
X. H. Liao ◽  
W. F. Wu ◽  
H. D. Meng ◽  
J. B. Zhao

ABSTRACTTo evaluate the dynamic properties of a coupled structure based on the dynamic properties of its substructures, this paper investigates the dynamic substructuring issue from the perspective of response prediction. The main idea is that the connecting forces at the interface of substructures can be expressed by the unknown coupled structural responses, and the responses can be solved rather easily. Not only rigidly coupled structures but also resiliently coupled structures are investigated. In order to further comprehend and visualize the nature of coupling problems, the Neumann series expansion for a matrix describing the relation between the coupled and uncoupled substructures is also introduced in this paper. Compared with existing response prediction methods, the proposed method does not have to measure any forces, which makes it easier to apply than the others. Clearly, the frequency response function matrix of coupled structures can be derived directly based on the response prediction method. Compared with existing frequency response function synthesis methods, it is more straightforward and comprehensible. Through demonstration of two examples, it is concluded that the proposed method can deal with structural coupling problems very well.


2006 ◽  
Vol 36 (11) ◽  
pp. 2173-2184 ◽  
Author(s):  
Holly F. Ryan ◽  
Marlene A. Noble

Abstract The amplitude of the frequency response function between coastal alongshore wind stress and adjusted sea level anomalies along the west coast of the United States increases linearly as a function of the logarithm (log10) of the period for time scales up to at least 60, and possibly 100, days. The amplitude of the frequency response function increases even more rapidly at longer periods out to at least 5 yr. At the shortest periods, the amplitude of the frequency response function is small because sea level is forced only by the local component of the wind field. The regional wind field, which controls the wind-forced response in sea level for periods between 20 and 100 days, not only has much broader spatial scales than the local wind, but also propagates along the coast in the same direction as continental shelf waves. Hence, it has a stronger coupling to and an increased frequency response for sea level. At periods of a year or more, observed coastal sea level fluctuations are not only forced by the regional winds, but also by joint correlations among the larger-scale climatic patterns associated with El Niño. Therefore, the amplitude of the frequency response function is large, despite the fact that the energy in the coastal wind field is relatively small. These data show that the coastal sea level response to wind stress forcing along the west coast of the United States changes in a consistent and predictable pattern over a very broad range of frequencies with time scales from a few days to several years.


Sign in / Sign up

Export Citation Format

Share Document