Effect of Fe Deficiency on the Photosynthetic System of Maize

1992 ◽  
Vol 140 (5) ◽  
pp. 527-530 ◽  
Author(s):  
Samir Sharma ◽  
G.G. Sanwal
1985 ◽  
Vol 54 (3) ◽  
pp. 613-619 ◽  
Author(s):  
G. M. Craig ◽  
C. Elliot ◽  
K. R. Hughes

1. A high incidence of vitamin B12 or folate deficiency, or both, may be found in the elderly, particularly those in hospital. This report concerns fifty cases detected in an inner-city-area geriatric unit during the course of routine clinical investigation. The majority had none of the classical haematological signs of vitamin B12 or folate deficiency, and all the patients reported had a mean corpuscular volume (MCV) of less than 100 fl.2. There was a significant negative correlation between the MCV and the erythrocyte folate (P< 0.01), supporting earlier published work using a low serum folate as an index of folate deficiency.3. There was no correlation between the MCV and the serum vitamin B12. Published work differs on this point.4. Serum iron, total Fe-binding capacity and percentage Fe saturation results were available in forty patients in this series. There was a significant positive correlation between the serum Fe and the MCV (P<0.01) and 34% of patients had haematological evidence of Fe deficiency. In the majority, however, there was no evidence that associated Fe deficiency had masked the haematological signs of vitamin B12 or folate deficiency.5. More attention should be paid to the problem of ‘masked’ vitamin B12 and folate deficiency in the elderly. There is a case for routine screening of the elderly for vitamin B12 and folate deficiency irrespective of the MCV.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Gao ◽  
Paula J. M. van Kleeff ◽  
Ka Wan Li ◽  
Albertus H. de Boer

AbstractTo date, few phenotypes have been described for Arabidopsis 14-3-3 mutants or the phenotypes showing the role of 14-3-3 in plant responding to abiotic stress. Although one member of the 14-3-3 protein family (14-3-3 omicron) was shown to be involved in the proper operation of Fe acquisition mechanisms at physiological and gene expression levels in Arabidopsis thaliana, it remains to be explored whether other members play a role in regulating iron acquisition. To more directly and effectively observe whether members of 14-3-3 non-epsilon group have a function in Fe-deficiency adaptation, three higher order quadruple KOs, kappa/lambda/phi/chi (klpc), kappa/lambda/upsilon/nu(klun), and upsilon/nu/phi/chi (unpc) were generated and studied for physiological analysis in this study. The analysis of iron-utilization efficiency, root phenotyping, and transcriptional level of Fe-responsive genes suggested that the mutant with kl background showed different phenotypes from Wt when plants suffered Fe starved, while these phenotypes were absent in the unpc mutant. Moreover, the absence of the four 14-3-3 isoforms in the klun mutant has a clear impact on the 14-3-3 interactome upon Fe deficiency. Dynamics of 14-3-3-client interactions analysis showed that 27 and 17 proteins differentially interacted with 14-3-3 in Wt and klun roots caused by Fe deficiency, respectively. Many of these Fe responsive proteins have a role in glycolysis, oxidative phosphorylation and TCA cycle, the FoF1-synthase and in the cysteine/methionine synthesis. A clear explanation for the observed phenotypes awaits a more detailed analysis of the functional aspects of 14-3-3 binding to the target proteins identified in this study.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 16
Author(s):  
Heba Hassan ◽  
Aishah Alatawi ◽  
Awatif Abdulmajeed ◽  
Manal Emam ◽  
Hemmat Khattab

Photosystem II is extremely susceptible to environmental alterations, particularly high temperatures. The maintenance of an efficient photosynthetic system under stress conditions is one of the main issues for plants to attain their required energy. Nowadays, searching for stress alleviators is the main goal for maintaining photosynthetic system productivity and, thereby, crop yield under global climate change. Potassium silicate (K2SiO3, 1.5 mM) and silicon dioxide nanoparticles (SiO2NPs, 1.66 mM) were used to mitigate the negative impacts of heat stress (45 °C, 5 h) on wheat (Triticum aestivum L.) cv. (Shandawelly) seedlings. The results showed that K2SiO3 and SiO2NPs diminished leaf rolling symptoms and electrolyte leakage (EL) of heat-stressed wheat leaves. Furthermore, the maximum quantum yield of photosystem II (Fv/Fm) and the performance index (PIabs), as well as the photosynthetic pigments and organic solutes including soluble sugars, sucrose, and proline accumulation, were increased in K2SiO3 and SiO2NPs stressed leaves. At the molecular level, RT-PCR analysis showed that K2SiO3 and SiO2NPs treatments stimulated the overexpression of PsbH, PsbB, and PsbD genes. Notably, this investigation indicated that K2SiO3 was more effective in improving wheat thermotolerance compared to SiO2NPs. The application of K2SiO3 and SiO2NPs may be one of the proposed approaches to improve crop growth and productivity to tolerate climatic change.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Jiang ◽  
Bin Lu ◽  
Liantao Liu ◽  
Wenjing Duan ◽  
Yanjun Meng ◽  
...  

Abstract Background As damage to the ecological environment continues to increase amid unreasonable amounts of irrigation, soil salinization has become a major challenge to agricultural development. Melatonin (MT) is a pleiotropic signal molecule and indole hormone, which alleviates the damage of abiotic stress to plants. MT has been confirmed to eliminate reactive oxygen species (ROS) by improving the antioxidant system and reducing oxidative damage under adversity. However, the mechanism by which exogenous MT mediates salt tolerance by regulating the photosynthetic capacity and ion balance of cotton seedlings still remains unknown. In this study, the regulatory effects of MT on the photosynthetic system, osmotic modulators, chloroplast, and anatomical structure of cotton seedlings were determined under 0–500 μM MT treatments with salt stress induced by treatment with 150 mM NaCl. Results Salt stress reduces the chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, PSII photochemical efficiency, PSII actual photochemical quantum yield, the apparent electron transfer efficiency, stomata opening, and biomass. In addition, it increases non-photochemical quenching. All of these responses were effectively alleviated by exogenous treatment with MT. Exogenous MT reduces oxidative damage and lipid peroxidation by reducing salt-induced ROS and protects the plasma membrane from oxidative toxicity. MT also reduces the osmotic pressure by reducing the salt-induced accumulation of Na+ and increasing the contents of K+ and proline. Exogenous MT can facilitate stomatal opening and protect the integrity of cotton chloroplast grana lamella structure and mitochondria under salt stress, protect the photosynthetic system of plants, and improve their biomass. An anatomical analysis of leaves and stems showed that MT can improve xylem and phloem and other properties and aides in the transportation of water, inorganic salts, and organic substances. Therefore, the application of MT attenuates salt-induced stress damage to plants. Treatment with exogenous MT positively increased the salt tolerance of cotton seedlings by improving their photosynthetic capacity, stomatal characteristics, ion balance, osmotic substance biosynthetic pathways, and chloroplast and anatomical structures (xylem vessels and phloem vessels). Conclusions Our study attributes help to protect the structural stability of photosynthetic organs and increase the amount of material accumulation, thereby reducing salt-induced secondary stress. The mechanisms of MT-induced plant tolerance to salt stress provide a theoretical basis for the use of MT to alleviate salt stress caused by unreasonable irrigation, fertilization, and climate change.


2019 ◽  
Vol 22 (15) ◽  
pp. 2844-2855 ◽  
Author(s):  
Faruk Ahmed ◽  
Moududur Rahman Khan ◽  
Ireen Akhtar Chowdhury ◽  
Rubhana Raqib ◽  
Anjan Kumar Roy ◽  
...  

AbstractObjective:The present study investigated the risks and benefits of routine Fe–folic acid (IFA) supplementation in pregnant women living in low- and high-groundwater-Fe areas in Bangladesh.Design:A case-controlled prospective longitudinal study design was used to compare the effect of daily Fe (60 mg) and folic acid (400 μg) supplementation for 3·5 months.Setting:A rural community in Bangladesh.Participants:Pregnant women living in low-groundwater-Fe areas (n 260) and high-groundwater-Fe areas (n 262).Results:Mean Hb and serum ferritin concentrations at baseline were significantly higher in pregnant women in the high-groundwater-Fe areas. After supplementation, the mean change in Hb concentration in the women in the low-groundwater-Fe areas (0·10 mg/dl) was higher than that in the pregnant women in the high-groundwater-Fe areas (–0·08 mg/dl; P = 0·052). No significant changes in the prevalence of anaemia or Fe deficiency (ID) in either group were observed after IFA supplementation; however, the prevalence of Fe-deficiency anaemia (IDA) decreased significantly in the women in the low-groundwater-Fe areas. The risk of anaemia, ID and IDA after supplementation did not differ significantly between the groups. None of the participants had Fe overload. However, a significant proportion of the women in the high- and low-groundwater-Fe areas remained anaemic and Fe-deficient after supplementation.Conclusion:IFA supplementation significantly increased the Hb concentration in pregnant women living in the low-groundwater-Fe areas. Routine supplementation with 60 mg Fe and 400 μg folic acid does not pose any significant risk of haemoconcentration or Fe overload. Further research to identify other nutritional and non-nutritional contributors to anaemia is warranted to prevent and treat anaemia.


2013 ◽  
Vol 4 ◽  
Author(s):  
Marta Dell’Orto ◽  
Patrizia De Nisi ◽  
Gianpiero Vigani ◽  
Graziano Zocchi

2021 ◽  
Vol 10 ◽  
Author(s):  
Melisa A. Muñoz-Ruiz ◽  
Laura I. González-Zapata ◽  
Victoria Abril-Ulloa ◽  
Diego A. Gaitán-Charry

Abstract The present study aimed to assess the associations of the stages of Fe deficiency (Fe deficiency without anaemia (ID) and Fe-deficiency anaemia (IDA)) and anaemia with metabolic syndrome (MetS) in Ecuadorian women. A cross-sectional study was conducted in 5894 women aged 20–59 years, based on data from the 2012 Ecuadorian National Health and Nutrition Survey. The sample was stratified by age. A χ2 test was used to assess the possible associations of ID, IDA and anaemia with MetS. The prevalence ratio (PR) for each stage of Fe deficiency and anaemia was estimated considering women without MetS as a reference. The total prevalence of MetS, ID, IDA and anaemia was 32⋅3 % (se 0⋅6), 6⋅2 % (se 0⋅3), 7⋅1 % (se 0⋅3) and 5⋅0 % (se 0⋅3), respectively. In women aged 20–29, 30–39 and 40–49 years, MetS was associated with a lower prevalence of ID (PR (95 % CI; P-value)): 0⋅17 (0⋅06, 0⋅46; P < 0⋅001), 0⋅69 (0⋅48, 0⋅99; P = 0⋅044) and 0⋅44 (0⋅29, 0⋅67; P < 0⋅001), respectively. In women aged 50–59 years, MetS was associated with IDA and anaemia (PR (95 % CI; P-value)): 0⋅12 (0⋅02, 0⋅96; P = 0⋅026) and 0⋅22 (0⋅07, 0⋅64; P = 0⋅002), respectively. In conclusion, Ecuadorian women of reproductive age with MetS have a lower prevalence of ID compared with those without MetS. Furthermore, the MetS and IDA coexist at the population level. These findings require an analysis from a dietary pattern approach, which could provide key elements for developing public policies that simultaneously address all forms of malnutrition.


Sign in / Sign up

Export Citation Format

Share Document