Native Hardwood Tree Seedling Establishment Following Invasive Autumn-Olive (Elaeagnus umbellata) Removal on a Reclaimed Coal Mine

2018 ◽  
Vol 11 (3) ◽  
pp. 155-161
Author(s):  
Morgan E. Franke ◽  
Carl Zipper ◽  
Jacob N. Barney

AbstractThe Appalachian region of the United States is home to the largest temperate deciduous forest in the world, though surface mining has caused significant forest loss. Many former coal mines are now dominated by invasive plants, which often inhibit establishment of desirable species, especially slower-growing native trees. Autumn-olive (Elaeagnus umbellataThunb.) is a nonnative, nitrogen-fixing shrub that was historically planted on former coalfields, but now impedes reclamation. To better understand the influence ofE. umbellatamanagement practices on hardwood establishment, we evaluated two common management practices: cutting and cut stump herbicide treatment. Planted native tree species, including black cherry (Prunus serotinaEhrh.), pin oak (Quercus palustrisMünchh.), and red maple (Acer rubrumL.), were monitored for survival and performance over two growing seasons followingE. umbellataremoval. In each plot, we also measured plant-available nitrate (NO3−) and ammonium (NH4+) in soils using ionic exchange membranes. At the end of the first growing season, native tree survival was high, and the presence or absence ofE. umbellatahad little effect on tree survival or growth, despite the higher plant-available nitrate whereE. umbellatawas present. By the end of the second growing season, native tree survival dropped to 20% to 60% and varied amongE. umbellatatreatments. Survival was highest whenE. umbellatawas cut and treated with herbicide, though tree growth was similar across all treatments withoutE. umbellata. When establishing native trees to replaceE. umbellata, cutting and herbicide application treatment of the invader resulted in the highest overall efficacy (100% control), though the most cost-effective method may be to simply cut mature stands despite regrowth, as this resulted in equivalent native tree growth over 2 yr. While this allowedE. umbellataregeneration, it provided sufficient invader control to allow initial tree establishment. Cutting and herbicide application treatment resulted in lessE. umbellataregeneration and appears to provide greater assurance that established trees will persist over the long term.

Shore & Beach ◽  
2020 ◽  
pp. 83-91
Author(s):  
Tim Carruthers ◽  
Richard Raynie ◽  
Alyssa Dausman ◽  
Syed Khalil

Natural resources of coastal Louisiana support the economies of Louisiana and the whole of the United States. However, future conditions of coastal Louisiana are highly uncertain due to the dynamic processes of the Mississippi River delta, unpredictable storm events, subsidence, sea level rise, increasing temperatures, and extensive historic management actions that have altered natural coastal processes. To address these concerns, a centralized state agency was formed to coordinate coastal protection and restoration effort, the Coastal Protection and Restoration Authority (CPRA). This promoted knowledge centralization and supported informal adaptive management for restoration efforts, at that time mostly funded through the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA). Since the Deepwater Horizon (DWH) oil spill in 2010 and the subsequent settlement, the majority of restoration funding for the next 15 years will come through one of the DWH mechanisms; Natural Resource and Damage Assessment (NRDA), the RESTORE Council, or National Fish and Wildlife Foundation –Gulf Environmental Benefit Fund (NFWF-GEBF). This has greatly increased restoration effort and increased governance complexity associated with project funding, implementation, and reporting. As a result, there is enhanced impetus to formalize and unify adaptive management processes for coastal restoration in Louisiana. Through synthesis of input from local coastal managers, historical and current processes for project and programmatic implementation and adaptive management were summarized. Key gaps and needs to specifically increase implementation of adaptive management within the Louisiana coastal restoration community were identified and developed into eight tangible and specific recommendations. These were to streamline governance through increased coordination amongst implementing entities, develop a discoverable and practical lessons learned and decision database, coordinate ecosystem reporting, identify commonality of restoration goals, develop a common cross-agency adaptive management handbook for all personnel, improve communication (both in-reach and outreach), have a common repository and clearing house for numerical models used for restoration planning and assessment, and expand approaches for two-way stakeholder engagement throughout the restoration process. A common vision and maximizing synergies between entities can improve adaptive management implementation to maximize ecosystem and community benefits of restoration effort in coastal Louisiana. This work adds to current knowledge by providing specific strategies and recommendations, based upon extensive engagement with restoration practitioners from multiple state and federal agencies. Addressing these practitioner-identified gaps and needs will improve engagement in adaptive management in coastal Louisiana, a large geographic area with high restoration implementation within a complex governance framework.


1992 ◽  
Vol 19 (2) ◽  
pp. 1-24 ◽  
Author(s):  
Thomas Tyson

Several authors have suggested that a particular managerial component was needed before cost accounting could be fully used for accountability and disciplinary purposes. They argue that the marriage of managerialism and accounting first occurred in the United States at the Springfield Armory after 1840. They generally downplay the quality and usefulness of cost accounting at the New England textile mills before that time and call for a re-examination of original mill records from a disciplinary perspective. This paper reports the results of such a re-examination. It initially describes the social and economic environment of U.S. textile manufacturing in New England in the early nineteenth century. Selected cost memos and reports are described and analyzed to indicate the nature and scope of costing undertaken at the mills in Lowell, Massachusetts, in the late 1820s and early 1830s. The paper discusses how particular cost information was used and speculates why certain more modern procedures were not adopted. Its major finding is that cost management practices fully measured up to the business complexities, economic pressures, and social forces of the day.


2021 ◽  
pp. 1-24
Author(s):  
Chad F. Hammer ◽  
John S. Gunn

Abstract Non-native invasive plant species are a major cause of ecosystem degradation and impairment of ecosystem service benefits in the United States. Forested riparian areas provide many ecosystem service benefits and are vital to maintaining water quality of streams and rivers. These systems are also vulnerable to natural disturbances and invasion by non-native plants. We assessed whether planting native trees on disturbed riparian sites may increase biotic resistance to invasive plant establishment in central Vermont in the northeastern United States. The density (stems/m2) of invasive stems was higher in non-planted sites (x̄=4.1 stems/m2) compared to planted sites (x̄=1.3 stems/m2). More than 90% of the invasive plants were Japanese knotweed (Fallopia japonica). There were no significant differences in total stem density of native vegetation between planted and non-planted sites. Other measured response variables such as native tree regeneration, species diversity, soil properties and soil function showed no significant differences or trends in the paired riparian study sites. The results of this case study indicate that tree planting in disturbed riparian forest areas may assist conservation efforts by minimizing the risk of invasive plant colonization.


2021 ◽  
pp. 1-21
Author(s):  
Jose H. S. de Sanctis ◽  
Amit J. Jhala

Abstract Velvetleaf is an economically important weed in agronomic crops in Nebraska and the United States. Dicamba applied alone usually does not provide complete velvetleaf control, particularly when velvetleaf is greater than 15 cm tall. The objectives of this experiment were to evaluate the interaction of dicamba, fluthiacet-methyl, and glyphosate applied alone or in a mixture in two- or three-way combinations for velvetleaf control in dicamba/glyphosate-resistant (DGR) soybean and to evaluate whether velvetleaf height (≤ 12 cm or ≤ 20 cm) at the time of herbicide application influences herbicide efficacy, velvetleaf density, biomass, and soybean yield. Field experiments were conducted near Clay Center, Nebraska in 2019 and 2020. The experiment was arranged in a split-plot with velvetleaf height (≤ 12 cm or ≤ 20 cm) as the main plot treatment and herbicides as sub-plot treatment. Fluthiacet provided ≥ 94% velvetleaf control 28 d after treatment (DAT) and ≥ 96% biomass reduction regardless of application rate or velvetleaf height. Velvetleaf control was 31% to 74% at 28 DAT when dicamba or glyphosate was applied alone to velvetleaf ≤ 20 cm tall compared with 47% to 100% control applied to ≤ 12 cm tall plants. Dicamba applied alone to ≤ 20 cm tall velvetleaf provided < 75% control and < 87% biomass reduction 28 DAT compared with ≥ 90% control with dicamba at 560 g ae ha−1 + fluthiacet at 7.2 g ai ha−1 or glyphosate at 1,260 g ae ha−1. Dicmaba at 280 g ae ha−1 + glyphosate at 630 g ae ha−1 applied to ≤ 20 cm tall velvetleaf resulted in 86% control 28 DAT compared with the expected 99% control. The interaction of dicamba + fluthiacet + glyphosate was additive for velvetleaf control and biomass reduction regardless of application rate and velvetleaf height.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


2019 ◽  
Vol 19 (5) ◽  
pp. 1413-1421 ◽  
Author(s):  
Gaetano Alessandro Vivaldi ◽  
Salvatore Camposeo ◽  
Giuseppe Lopriore ◽  
Cristina Romero-Trigueros ◽  
Francisco Pedrero Salcedo

Abstract The main objective of this study was to acquire agronomic knowledge about the effects of irrigation with saline reclaimed (RW) and desalinated DESERT (DW) water and different irrigation strategies: control full irrigation (FI) and regulated deficit irrigation (RDI) on leaf nutrients, tree growth and fruit quality and yield of almond trees in pots. Our results showed that RW had the highest concentration of some valuable agronomic nutrients such as N, but also of phytotoxic elements (Na and Cl−). Na leaf concentration on RW treatments reached toxic levels, especially under RDI, and toxicity symptoms were shown. Regarding tree growth, cumulate trunk diameter on RW-RDI was significantly lower than on the control treatment and shoot growth was reduced from the beginning of the irrigation season in RW treatments. Maximum yield was reached on RW-FI, 18% higher than the control treatment. However, RDI strategies influenced negatively on yield, being 23% less in RW and 7% less in DW although water productivity was not significantly reduced by water stress. These findings manifest that the combination of RW and RDI can be a promising future practice for almond irrigation, but long-term studies to establish suitable management practices must be developed.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 235-242 ◽  
Author(s):  
A. H. McKay ◽  
H. Förster ◽  
J. E. Adaskaveg

Few postharvest treatments are available for managing sour rot of citrus caused by Galactomyces citri-aurantii and they are generally not very effective. The demethylation-inhibiting (DMI) triazole fungicides propiconazole and cyproconazole were found to be highly effective and more efficacious than other DMIs evaluated, such as metconazole and tebuconazole, in reducing postharvest sour rot of citrus. Additional studies were conducted with propiconazole as a postharvest treatment because it has favorable toxicological characteristics for food crop registration in the United States and the registrant supports a worldwide registration. Regression and covariance analyses were performed to determine optimal time of application after inoculation and fungicide rate. In laboratory studies, decay incidence increased when propiconazole applications were delayed from 8 to 24 h (lemon) or 18 to 42 h (grapefruit) after inoculation. Effective rates of the fungicide were 64 to 512 μg/ml and were dependent on inoculum concentration of the sour rot pathogen and on the type of citrus fruit. Propiconazole was found to be compatible with sodium hypochlorite at 100 μg/ml and 1 to 3% sodium bicarbonate without loss of efficacy for decay control on lemon. The addition of hydrogen peroxide/peroxyacetic acid at 80 μg/ml slightly decreased the effectiveness of propiconazole. Heated (48°C) solutions of propiconazole did not significantly improve the efficacy compared with solutions at 22°C. In experimental packing-line studies, aqueous in-line drenches applied alone or followed by applications of the fungicide in storage or packing fruit coatings were highly effective, reducing sour rot to between 0 and 1.2% compared with 83.8% decay incidence in the control when treatments were made up to 16 h after inoculation. When the fungicide was applied in either fruit coating, decay was only reduced to 49.1 to 57.1% incidence. Tank mixtures of propiconazole with the citrus postharvest fungicides fludioxonil and azoxystrobin were highly effective in reducing green mold caused by isolates of Penicillium digitatum sensitive or moderately resistant to imazalil and sour rot. Propiconazole will be an important postharvest fungicide for managing sour rot of citrus and potentially can be integrated into current management practices to reduce postharvest crop losses caused by DMI-sensitive isolates of P. digitatum.


Diabetology ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 77-94
Author(s):  
Alexander Little ◽  
Kevin Murphy ◽  
Patrick Solverson

The prevalence of diet-induced obesity and type-2 diabetes remains a growing concern in the United States. As best management practices still include improved diet and physical activity, bioactive food components, contained within functional foods, show promise in curbing the cardiometabolic complications associated with excess weight and diabetes. Quinoa is an emerging candidate crop for its versatility in wide-ranging growing conditions as one approach to address food security, but it also contains several components that may serve as a dietary tool for post-industrial countries struggling with the health complications of caloric excess. Preliminary rodent feeding studies demonstrate that components within quinoa, namely, phytosteroids, phenolics, polysaccharides, and peptides, can prevent adiposity, dyslipidemia, and hyperglycemia. Mechanistic activity may involve reduced lipid absorption and adipogenesis, increased energy expenditure and glucose oxidation and corrected gut microbiota. Other intestinal actions may include blocked carbohydrate digestion with enhanced incretin signaling. Evidence in clinical trials is lacking and future research spanning cells to the clinic is needed to further elucidate the interesting preliminary reports reviewed here. Quinoa offers several unique attributes that could be harnessed to improve the dietary management of obesity and diabetes.


2021 ◽  
Author(s):  
Milagros Rodriguez-Caton ◽  
Laia Andreu-Hayles ◽  
Mariano S Morales ◽  
Valérie Daux ◽  
Duncan A Christie ◽  
...  

Abstract Tree growth is generally considered to be temperature-limited at upper elevation treelines. Yet, climate factors controlling tree growth at semiarid treelines are poorly understood. We explored the influence of climate on stem growth and stable isotopes for Polyepis tarapacana, the world’s highest elevation tree-species found only in the South American Altiplano. We developed tree-ring width index (RWI), oxygen (δ18O) and carbon (δ13C) chronologies for the last 60 years at four P. tarapacana stands located above 4,400 meters in elevation, along a 500-km latitude-aridity gradient. Total annual precipitation decreased from 300 to 200 mm from the northern to the southern sites. We used RWI as a proxy of wood formation (carbon sink) and isotopic tree-ring signatures as proxies of leaf-level gas exchange processes (carbon source). We found distinct climatic conditions regulating carbon-sink processes along the gradient. Current-growing season temperature regulated RWI at wetter-northern sites, while prior-growing season precipitation determined RWI at arid-southern sites. This suggests that the relative importance of temperature to precipitation in regulating tree growth is driven by site-water availability. In contrast, warm and dry growing-seasons resulted in enriched tree-ring δ13C and δ18O at all study sites, suggesting that similar climate conditions control carbon-source processes. Site-level δ13C and δ18O chronologies were significantly and positively related at all sites, with the strongest relationships among the southern-drier stands. This indicates an overall regulation of intercellular carbon dioxide via stomatal conductance for the entire P. tarapacana network, with greater stomatal control when aridity increases. The manuscript also highlights a coupling and decoupling of physiological processes at leaf level versus wood formation depending on their respectively uniform and distinct sensitivity to climate. This study contributes to better understand and predict the response of high-elevation Polylepis woodlands to rapid climate changes and projected drying in the Altiplano.


Author(s):  
Juliana Vantellingen ◽  
Sean C. Thomas

Log landings are areas within managed forests used to process and store felled trees prior to transport. Through their construction and use soil is removed or redistributed, compacted, and organic matter contents may be increased by incorporation of wood fragments. The effects of these changes to soil properties on methane (CH<sub>4</sub>) flux is unclear and unstudied. We quantified CH<sub>4</sub> flux rates from year-old landings in Ontario, Canada, and examined spatial variability and relationships to soil properties within these sites. Landings emitted CH<sub>4</sub> throughout the growing season; the average CH<sub>4</sub> emission rate from log landings was 69.2 ± 12.8 nmol m<sup>-2</sup> s<sup>-1</sup> (26.2 ± 4.8 g CH<sub>4</sub> C m<sup>-2</sup> y<sup>-1</sup>), a rate comparable to CH<sub>4</sub>-emitting wetlands. Emission rates were correlated to soil pH, organic matter content and quantities of buried woody debris. These properties led to strong CH<sub>4</sub> emissions, or “hotspots”, in certain areas of landings, particularly where processing of logs occurred and incorporated woody debris into the soil. At the forest level, emissions from landings were estimated to offset ~12% of CH<sub>4</sub> consumption from soils within the harvest area, although making up only ~0.5% of the harvest area. Management practices to avoid or remediate these emissions should be developed as a priority measure in “climate-smart” forestry.


Sign in / Sign up

Export Citation Format

Share Document