scholarly journals Leishmania infantum and Dirofilaria immitis coinfection in dogs in Greece

2016 ◽  
Vol 2 ◽  
Author(s):  
PANTELIS NTAIS ◽  
VASILIKI CHRISTODOULOU ◽  
EMMANOUIL DOKIANAKIS ◽  
MARIA ANTONIOU

SUMMARYLeishmaniasis and dirofilariasis are parasitic diseases of humans and dogs, worldwide, and they are often found as coinfections in endemic areas. Cases of human and canine dirofilariasis have being reported in Greece and leishmaniasis is endemic in most prefectures in humans and dogs. In most cases, dirofilariasis is established by parasitological (the modified Knott's test) and/or immunological methods, whilst for leishmaniasis molecular techniques and culture are also used. During an epidemiological study in Greece, 22·1% of the 5772 dogs studied were found positive by serology forLeishmania.Blood cultures of 165 (12·94%) of these animals producedLeishmaniapromastigotes and 26 (2·03%)Dirofilariamicrofilariae (L1), whilst only in two (0·16%) bothLeishmaniaandDirofilariaL1 appeared. The aim was to assess coinfections by the two parasites in dogs in Greece, the isolation and survival ofDirofilariamicrofilariae andLeishmaniapromastigotes using clotted blood (a fast, simple and low-cost method) and the survival potential of the two parasites in coexistence,in vitro.

2019 ◽  
Vol 25 (39) ◽  
pp. 5266-5278 ◽  
Author(s):  
Katia D'Ambrosio ◽  
Claudiu T. Supuran ◽  
Giuseppina De Simone

Protozoans belonging to Plasmodium, Leishmania and Trypanosoma genera provoke widespread parasitic diseases with few treatment options and many of the clinically used drugs experiencing an extensive drug resistance phenomenon. In the last several years, the metalloenzyme Carbonic Anhydrase (CA, EC 4.2.1.1) was cloned and characterized in the genome of these protozoa, with the aim to search for a new drug target for fighting malaria, leishmaniasis and Chagas disease. P. falciparum encodes for a CA (PfCA) belonging to a novel genetic family, the η-CA class, L. donovani chagasi for a β-CA (LdcCA), whereas T. cruzi genome contains an α-CA (TcCA). These three enzymes were characterized in detail and a number of in vitro potent and selective inhibitors belonging to the sulfonamide, thiol, dithiocarbamate and hydroxamate classes were discovered. Some of these inhibitors were also effective in cell cultures and animal models of protozoan infections, making them of considerable interest for the development of new antiprotozoan drugs with a novel mechanism of action.


Author(s):  
Moema S. Santana ◽  
Rute Lopes ◽  
Isabela H. Peron ◽  
Carla R. Cruz ◽  
Ana M. M. Gaspar ◽  
...  

Background: Hepatitis C virus infection is a significant global health burden, which causes acute or chronic hepatitis. The acute hepatitis C is generally asymptomatic and progresses to cure, while persistent infection can progress to chronic liver disease and extrahepatic manifestations. Standard treatment is expensive, poorly tolerated, and has variable sustained virologic responses amongst the different viral genotypes. New therapies involve direct acting antivirals; however, it is also very expensive and may not be accessible for all patients worldwide. In order to provide a complementary approach to the already existing therapies, natural bioactive compounds are investigated as to their several biologic activities, such as direct antiviral properties against hepatitis C, and effects on mitigating chronic progression of the disease, which includes hepatoprotective, antioxidant, anticarcinogenic and anti-inflammatory activities; additionally, these compounds present advantages, as chemical diversity, low cost of production and milder or inexistent side effects. Objective: To present a broad perspective on hepatitis C infection, the chronic disease, and natural compounds with promising anti-HCV activity. Methods: This review consists of a systematic review study about the natural bioactive compounds as a potential therapy for hepatitis C infection. Results: The quest for natural products have yielded compounds with biologic activity, including viral replication inhibition in vitro, demonstrating antiviral activity against hepatitis C. Conclusion: One of the greatest advantages of using natural molecules from plant extracts is the low cost of production, not requiring chemical synthesis, which can lead to less expensive therapies available to low and middle-income countries.


2021 ◽  
Vol 18 (4) ◽  
pp. 398-418
Author(s):  
Vinícius Guimarães da Paixão ◽  
Samuel Silva da Rocha Pita

Background: Leishmania infantum causes the most lethal form of Leishmaniasis: Visceral leishmaniasis. Current therapy for this disease is related to the development of drug-resistant species and toxicity. Trypanothione Reductase (LiTR), a validated target for the drug discovery process, is involved with parasites' thiol-redox metabolism. Objective: In this study, through Virtual Screening employing two distinct Natural Products Brazilian databases, we aimed to identify novel inhibitor scaffolds against LiTR. Results: Thus, the “top 10” LiTR-ligand energies have been selected and their interaction profiles into LiTR sites through the AuPosSOM server have been verified. Finally, Pred-hERG, Aggregator Advisor, FAF-DRUGS, pkCSM and DataWarrior were employed and their results allowed us to evaluate, respectively, the cardiotoxicity, aggregation capacity, presence of false-positive compounds (PAINS) and their toxicities. Conclusion: Three molecules that overcame the in silico pharmacokinetic analysis and have a good interaction with LiTR, were chosen to use in vitro assays hoping that our computational results reported here would aid the development of new anti-leishmanial compounds.


1994 ◽  
Vol 78 (1) ◽  
pp. 76-84 ◽  
Author(s):  
J.M. Collins ◽  
J.F. Williams ◽  
L. Kaiser

2021 ◽  
Vol 22 (3) ◽  
pp. 1124
Author(s):  
Mafalda Giovanna Reccia ◽  
Floriana Volpicelli ◽  
Eirkiur Benedikz ◽  
Åsa Fex Svenningsen ◽  
Luca Colucci-D’Amato

Neural stem cells represent a powerful tool to study molecules involved in pathophysiology of Nervous System and to discover new drugs. Although they can be cultured and expanded in vitro as a primary culture, their use is hampered by their heterogeneity and by the cost and time needed for their preparation. Here we report that mes-c-myc A1 cells (A1), a neural cell line, is endowed with staminal properties. Undifferentiated/proliferating and differentiated/non-proliferating A1 cells are able to generate neurospheres (Ns) in which gene expression parallels the original differentiation status. In fact, Ns derived from undifferentiated A1 cells express higher levels of Nestin, Kruppel-like factor 4 (Klf4) and glial fibrillary protein (GFAP), markers of stemness, while those obtained from differentiated A1 cells show higher levels of the neuronal marker beta III tubulin. Interestingly, Ns differentiation, by Epidermal Growth Factors (EGF) and Fibroblast Growth Factor 2 (bFGF) withdrawal, generates oligodendrocytes at high-yield as shown by the expression of markers, Galactosylceramidase (Gal-C) Neuron-Glial antigen 2 (NG2), Receptor-Interacting Protein (RIP) and Myelin Basic Protein (MBP). Finally, upon co-culture, Ns-A1-derived oligodendrocytes cause a redistribution of contactin-associated protein (Caspr/paranodin) protein on neuronal cells, as primary oligodendrocytes cultures, suggesting that they are able to form compact myelin. Thus, Ns-A1-derived oligodendrocytes may represent a time-saving and low-cost tool to study the pathophysiology of oligodendrocytes and to test new drugs.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 701
Author(s):  
Ovidiu Bîcă ◽  
Ioan Sârbu ◽  
Carmen Iulia Ciongradi

This article reviews the latest information about preserving reproductive potential that can offer enhanced prospects for future conception in the pediatric male population with cancer, whose fertility is threatened because of the gonadotoxic effects of chemotherapy and radiation. An estimated 400,000 children and adolescents aged 0–19 years will be diagnosed with cancer each year. Fertility is compromised in one-third of adult male survivors of childhood cancer. We present the latest approaches and techniques for fertility preservation, starting with fertility preservation counselling, a clinical practice guideline used around the world and finishing with recent advances in basic science and translational research. Improving strategies for the maturation of germ cells in vitro combined with new molecular techniques for gene editing could be the next scientific keystone to eradicate genetic diseases such as cancer related mutations in the offspring of cancer survivors.


2021 ◽  
Vol 134 ◽  
pp. 58-63
Author(s):  
Matheus Fujimura Soares ◽  
Larissa Martins Melo ◽  
Jaqueline Poleto Bragato ◽  
Amanda de Oliveira Furlan ◽  
Natália Francisco Scaramele ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Christopher C. Evans ◽  
Katherine M. Day ◽  
Yi Chu ◽  
Bridget Garner ◽  
Kaori Sakamoto ◽  
...  

Abstract Background The Mongolian jird (Meriones unguiculatus) has long been recognized as a permissive host for the filarial parasite Brugia malayi; however, it is nonpermissive to another filarial parasite, canine heartworm (Dirofilaria immitis). By elucidating differences in the early response to infection, we sought to identify mechanisms involved in the species-specific clearance of these parasites. We hypothesized that the early clearance of D. immitis in intraperitoneal infection of the jird is immune mediated and parasite species dependent. Methods Jird peritoneal exudate cells (PECs) were isolated and their attachment to parasite larvae assessed in vitro under various conditions: D. immitis and B. malayi cultured separately, co-culture of both parasites, incubation before addition of cells, culture of heat-killed parasites, and culture with PECs isolated from jirds with mature B. malayi infection. The cells attaching to larvae were identified by immunohistochemistry. Results In vitro cell attachment to live D. immitis was high (mean = 99.6%) while much lower for B. malayi (mean = 5.56%). This species-specific attachment was also observed when both filarial species were co-cultured, with no significant change from controls (U(9, 14) = 58.5, p = 0.999). When we replicated these experiments with PECs derived from jirds subcutaneously infected with B. malayi, the results were similar (99.4% and 4.72% of D. immitis and B. malayi, respectively, exhibited cell attachment). Heat-killing the parasites significantly reduced cell attachment to D. immitis (mean = 71.9%; U(11, 14) = 7.5, p < 0.001) while increasing attachment to B. malayi (mean = 16.7%; U(9, 15) = 20, p = 0.002). Cell attachment to both species was reduced when larvae were allowed a 24-h pre-incubation period prior to the addition of cells. The attaching cells were identified as macrophages by immunohistochemistry. Conclusions These results suggest a strongly species-dependent response from which B. malayi could not confer protection by proxy in co-culture. The changes in cell attachment following heat-killing and pre-incubation suggest a role for excretory/secretory products in host immune evasion and/or antigenicity. The nature of this attachment is the subject of ongoing study and may provide insight into filarial host specificity.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


Sign in / Sign up

Export Citation Format

Share Document