Effect of ambient temperature on energy metabolism in growing pigs

1987 ◽  
Vol 44 (3) ◽  
pp. 427-433 ◽  
Author(s):  
J. M. F. Verhagen ◽  
A. A. M. Kloosterman ◽  
A. Slijkhuis ◽  
M. W. A. Verstegen

ABSTRACTGroup-housed young growing pigs, given food ad libitum, were exposed to two temperatures, one within thermal neutrality (25°C) and one around the lower critical temperature (15°C). Pigs at 15°C had daily gains reduced by 57 g for 6 days after initial exposure. Food intake was increased significantly after 6 days at 15°C but not at 25°C. Maintenance requirement was increased by 58 kJ/kg M0·75 and energy retained as protein was decreased by 49 kJ/kg M0·75 for the first 6 days after exposure to the treatment of 15°C and thereafter both became equivalent to those of pigs at 25°C afterwards. It is concluded that animals were acclimatized after 6 days exposure.

1984 ◽  
Vol 247 (5) ◽  
pp. R837-R841 ◽  
Author(s):  
K. J. Nilssen ◽  
J. A. Sundsfjord ◽  
A. S. Blix

Food intake, body weight, serum levels of triiodothyronine (T3) and free thyroxine (FT4), and metabolic rate were measured at intervals in Svalbard (SR) and Norwegian (NR) reindeer. From summer to winter food intake decreased 57 (SR) and 55% (NR), while body weight decreased 8.6 (SR) and 3.8% (NR). In SR T3 and FT4 changed seasonally, whereas this was only evident for T3 in NR. Resting (standing) metabolic rate (RMR) in winter was 1.55 (SR) and 2.05 W X kg-1 (NR), lower critical temperature (TLC) being -50 (SR) and -30 degrees C (NR). RMR in summer was 2.15 (SR) and 2.95 W X kg-1 (NR), TLC being -15 (SR) and 0 degrees C (NR). Seasonal changes in T3 and FT4 did not coincide with changes in food intake or RMR in either SR or NR. RMR did, however, correlate with food intake. This indicates that seasonal changes in RMR are due to the thermic effects of feeding and represent no physiological adaptation aimed at conservation of energy during winter.


1992 ◽  
Vol 55 (2) ◽  
pp. 241-246 ◽  
Author(s):  
A. G. de Vries ◽  
E. Kanis

AbstractA biological growth model was developed to study economic values for average ad libitum food intake capacity (FIC) in growing pigs. The model was based on the linear/plateau relationship between protein deposition and food intake. Input variables were: minimum fat to protein deposition ratio (R), maximum protein deposition rate (Pdmax)and food intake (FI). Output variables were production traits and production costs.Economic values (under commercial conditions with ad libitum feeding) were derived with the growth model for each of the traits FIC, R, and Pdmax keeping the other two traits constant, for three alternative levels of FIC. If FIC was too low to realize Pdmax, FIC had a positive economic value, R had a negative economic value and the value of Pdmax was zero. If FIC was higher than necessary to realize Pdmax, economic values were negative, zero and positive for FIC, R, and Pdmax respectively. If FIC was just sufficient to realise Pdmax, the lowest production costs occurred. Now, R had a negative economic value and Pdmax had a positive economic value.With a restricted feeding regimen under commercial conditions a daily food supply just sufficient to realize Pdmax should be pursued. It was concluded that use of a biological growth model to estimate economic values for FIC would give more insight into correct selection strategies than would the use of an economic model.


1985 ◽  
Vol 40 (2) ◽  
pp. 331-343 ◽  
Author(s):  
E. S. Batterham ◽  
L. R. Giles ◽  
E. Belinda Dettmann

ABSTRACTThe responses of growing pigs to dietary lysine concentration, as influenced by food intake, sex (intact males and females) and live weight were investigated in a 4 x 2 x 2 x 2 factorial experiment involving 128 Large White pigs. Lysine concentrations were 7, 8, 9 and 10 g/kg air-dry food. The basal wheat-soya bean meal diet (14·0 MJ digestible energy per kg) was offered either ad libitum or on a restricted feeding scale to pigs from 20 to 85 kg live weight. During the 50 to 85 kg growth phase, the effects of proportionately reducing the lysine concentrations by 0·2 were investigated. Performance response was assessed in two ways; by analysis of variance for the 20 to 50, 50 to 85 and 20 to 85 kg phases, and by response surface analyses of data from successive 10-kg weight intervals.An initial analysis of variance indicated that food intake (of pigs fed ad libitum), daily gain and food conversion ratio varied with lysine concentration, but that the responses differed with food intake, sex and phase of growth.Analysis of the response surfaces delineated by lysine level and phase of growth indicated that for males and females with restricted food and males fed ad libitum, maximum daily gain was produced by feeding at least 10 g lysine per kg, declining to about 8 g/kg at 80 kg. With females fed ad libitum, maximum daily gain was obtained by feeding 9·9 g lysine per kg at 20 kg, declining to less than 5·6 g/kg at 75 kg.Carcass characteristics were largely unaffected by lysine concentration.


1997 ◽  
Vol 75 (3) ◽  
pp. 396-400 ◽  
Author(s):  
Paul C. Schieltz ◽  
Mary E. Murphy

To evaluate the contribution of changes in plumage insulation to the energy cost of molt, we measured oxygen consumption by wintering White-crowned Sparrows (Zonotrichia leucophrys gambelii) before and after plucking 12, 24, or 36% of their plumage, and when they were replacing these feathers. Measurements were made at 20 and 25 °C, two temperatures bracketing the lower critical temperature (ca. 23 °C) of wintering Z. l. gambelii, and at 10 °C, well below the birds' lower critical temperature. For comparison, oxygen consumption by naturally molting birds was measured at 25 °C during summer. In these sparrows, feather loss resulted in increased oxygen consumption only at 10 °C and when feather loss was moderate (24% plumage; 10% increase) to intensive (36% plumage; 24% increase). Regrowth of 24 and 36% of plumage resulted in increased oxygen consumption at 20 °C (10 and 8.5%, respectively) and 10 °C (16 and 28%, respectively). Oxygen consumption by birds was unaffected by loss or regrowth of 12% of the plumage regardless of temperature, and at 25 °C, oxygen consumption was unaffected by the intensity of plumage replacement (0–36%). Comparison of oxygen consumption at 25 °C between naturally molting summer birds and treated winter birds revealed that the energy cost of molt and the apparent energy inefficiency of molt result neither from added thermoregulatory costs nor from the costs of feather synthesis per se, but seemingly from metabolic changes entrained by molt.


1989 ◽  
Vol 49 (3) ◽  
pp. 497-502 ◽  
Author(s):  
J. Carol Petherick ◽  
A. W. Beattie ◽  
D. A. V. Bodero

ABSTRACTThree replicates of three group sizes (six, 18 and 36) of grower pigs were housed with the same space allocation (0·66 m2 per pig), feeding and drinking space per animal. The animals were mixed and kept together for a period of 22 days. They were given food ad libitum, were weighed weekly and a record kept of the group food intake for the 22-day period. Weight at mixing had a significant effect on weight gains during the 1st week. There was a significant interaction between group size and replicates for weight gains; generally weight gains were lowest in the group size of 36 animals during the first 2 weeks, but in the 3rd week there was no difference between the group sizes. Sex had no effect on weight gains. The variation in weights between group members were significantly greater in the group size of 36 than in the group sizes of six and 18 at the start of the trial, but at the end of the trial there was no difference in the variances of weights in the three group sizes. There was no difference between the group sizes in the variances of the weight gains. There was a significant positive correlation (r = +0·36) between weight at mixing and weight gain for the group size of 18. Group size had no effect on food intake, but the food conversion efficiency of the animals in the group size of 36 was significantly poorer than in the group sizes of six and 18.


Author(s):  
P.H. Simmins ◽  
A.W. Armsby ◽  
S.A. Edwards ◽  
A.T. Smith

Intensive pig housing often provides an environment with high levels of airborne contaminants which may be to the detriment of the health and welfare of the pig and the stockman. The problem is compounded by producers maintaining higher temperatures than necessary in an attempt to maximise performance. Consequently, air changes in a room may be unduly limited, particularly when the temperature differential between the outside and inside is large as in winter. It is therefore desirable to keep the room temperature as low as possible to maximise ventilation rate whilst ensuring that feed is used efficiently for growth. The temperature above which this occurs is the lower critical temperature (LCT). However current recommendations for LCT are based on research carried out on individuals and very small groups. Commercially, the variability of the group may have a significant effect on the practical minimum temperature which may be achieved. The objective of the trial reported here was to assess the performance of larger groups of pigs grown in controlled conditions utilising current recommendations for LCT based on the Bruce and Clark (1979) model.


2000 ◽  
Vol 70 (3) ◽  
pp. 471-479 ◽  
Author(s):  
N. Quiniou ◽  
D. Renaudeau ◽  
S. Dubois ◽  
J. Noblet

AbstractForty multiparous Large White sows were used to investigate the effects of five ambient temperature levels (18, 22, 25, 27, and 29°C) and two dietary protein contents on their feeding behaviour during lactation. At each temperature treatment, ambient temperature was kept constant over the 21-day lactation period. Dietary protein content was either 140 or 170 g/kg with essential amino acids levels calculated to he non-limiting. Photoperiod was fixed to 14 h of artificial light. The animals were given food ad libitum between the 7th and the 19th day of lactation. Feeding behaviour was not influenced by diet composition. Over the 13 days under ad libitum feeding conditions, voluntary food intake decreased from 7·80 to 3·50 kg/day between 18 and 29°C, which was achieved through a decreased daily number of meals at the highest temperature (6·8 to 4·5 at 18 and 29°C, respectively). No significant difference among temperatures was observed on meal size, even if the highest (1372 g) and the lowest (883 g) values were obtained at 18 and 29°C, respectively. Rate of food intake was not influenced by temperature and averaged 133 g/min; consequently, decreased voluntary food intake under heat exposure resulted in reduced ingestion time (61 and 29 min/day at 18 and 29°C, respectively). Hourly food intake peaked at the beginning and the end of the light period. It resulted in a mainly diurnal partition of food intake. This partition was significantly affected by temperature as proportionately 0·87 and 0·91 of total food intake occurred during the day at 27 and 29°C, respectively, v. 0·81 on average between 18 and 25°C. Number of meals was lower during the night (1·1 v. 5·2 during the day on average); it decreased with increased temperature both during the day and the night. Meal size was lower during the night (938 v. 1080 g during the day on average). The ratio between water and food intake was significantly higher at 29°C (8·1 v. 4·2 l/kg on average between 18 and 27°C). Standing activity averaged 124 min/day with no significant difference between temperatures.


2001 ◽  
Vol 72 (3) ◽  
pp. 519-527 ◽  
Author(s):  
A. Collin ◽  
J. van Milgent ◽  
J. Le Dividich

AbstractPerformance in pigs is greatly reduced during periods of heat stress through a reduction in voluntary food intake (VFI). However, little information is available as to what extent growth in piglets is affected by high temperature. The objective of this study was therefore to quantify the change in VFI as affected by environmental temperature. Piglets, initially 15·5 (s.e. 1·9) kg body weight (BW), were individually housed and exposed over a period of 17 days to either 19, 21, 23, 25, 27, 29, 31, 33, or 35ºC. Animals had ad libitum access to a starter diet and water. VFI was measured daily whereas BW was determined twice weekly. Over the 17 days, daily VFI and BW gain were proportionately 0·48 and 0·51 lower at 35ºC than at 19ºC. Due to the reduced VFI at high temperatures, the average BW during the experiment was greater at low temperatures than at high temperatures. Consequently, part of the difference in VFI is directly due to temperature and part may be explained by cascading, indirect effects (i.e. the increased BW). To account for this, VFI was expressed as a power function of BW (VFI = aBWb). It was assumed that environmental temperature affected the scalar (a) through a quadratic or a ‘plateau-linear decline’ function of temperature. The VFI appeared relatively constant between 19 and 25ºC (0·096 (kg/day)/(kg BW0·83)) and decreased thereafter. Between 25 and 35ºC, VFI decreased on average by proportionately 0·28 in a 20-kg pig.


1996 ◽  
Vol 271 (2) ◽  
pp. E317-E325 ◽  
Author(s):  
P. A. Tataranni ◽  
D. E. Larson ◽  
S. Snitker ◽  
J. B. Young ◽  
J. P. Flatt ◽  
...  

The effect of glucocorticoid administration on energy metabolism and food intake was studied in 20 healthy, nondiabetic Caucasian male volunteers [27 +/- 5 (SD) yr, 72 +/- 9 kg, 20 +/- 7% body fat] randomly and blindly assigned to glucocorticoid (methylprednisolone, METH; n = 10) or placebo (PLAC; n = 10) treatment. Each subject was studied twice: during a weight maintenance diet and during ad libitum food intake. Energy metabolism was measured by indirect calorimetry and food intake by an automated food-selection system. Twenty-four-hour urinary norepinephrine excretion (24-h NE) was used as an estimate of sympathetic nervous system activity. During weight maintenance, METH intravenous infusion (125 mg/30 min) increased energy expenditure compared with PLAC, and after 4 days of oral therapy, METH (40 mg/day) decreased 24-h NE and increased energy expenditure compared with PLAC. During ad libitum food intake, after 4 days of METH (40 mg/day) or PLAC oral therapy, both groups increased their energy intake over weight maintenance, but the increase was significantly larger in the METH group compared with the PLAC group (4,554 +/- 1,857 vs. 2,867 +/- 846 kcal/day; P = 0.04). Our data suggest that therapeutic doses of glucocorticoids induce obesity mostly by increasing energy intake, an effect which may be related to the ability of glucocorticoids to act directly or indirectly on the central regulation of appetite.


1988 ◽  
Vol 47 (3) ◽  
pp. 467-474 ◽  
Author(s):  
L. R. Giles ◽  
E. Belinda Dettmann ◽  
R. F. Lowe

Abstract The effects of two temperatures (thermoneutral, 22°C v. fluctuating high temperature, 35·22°C), four food levels (ad libitum and three levels of food restriction) on growth and energy retention of growing pigs (male and female) was investigated in a 2 × 2 × 4 factorial experiment involving 48 individually penned pigs from 20 to 50 kg live weight. A second experiment was conducted over the 50 to 80 kg liveweight range using a 2 × 2 × 3 design.Mean daily digestible energy (DE) intake, daily gain, P2 backfat thickness, carcass fat proportion, total body energy retained and body energy retained as protein did not differ significantly between the temperature treatments in either experiment. Mean carcass protein proportion was greater at 35·22°C than at a constant 22°C.With pigs given food ad libitum during the 50 to 80 kg phase, an increase in temperature from 22°C to 35·22° reduced daily DE intake by 4·1 MJ (38·9 v. 34·8 MJ or 300 g food per day), reduced energy retention by 2·3 MJ/day (15·6 v. 13·3 MJ/day), and increased carcass protein proportion by 11 g/kg (142 v. 153 g/kg).There was a significant interaction between the effects of sex and temperature on P2 backfat thickness over both live-weight ranges. Female pigs housed at 35·22°C had 2·6 mm less P2 backfat at 50 kg (13 v. 15·6 mm) and 2 mm less at 80 kg (20 v. 22 mm) compared with females housed at 22°C. The P2 backfat thickness of male pigs did not vary at 50 kg (13·2 v. 13·5 mm) but when housed at 35·22°C males had 1·4 mm more P2 backfat at 80 kg (18·2 v. 19·6 mm).


Sign in / Sign up

Export Citation Format

Share Document