scholarly journals Influence of different levels and sources of resistant starch on faecal quality of dogs of various body sizes

2011 ◽  
Vol 106 (S1) ◽  
pp. S211-S215 ◽  
Author(s):  
Raphaël Goudez ◽  
Mickael Weber ◽  
Vincent Biourge ◽  
Patrick Nguyen

In dry-extruded canine diets, starch ileal digestibility varies with the starch source, amount and processing parameters. Starch that escapes duodeno-ileal digestion can affect faecal quality by stimulating colonic bacterial fermentation. The aim of the present study was to assess the effect of various resistant starch (RS) sources and levels on the faecal score of dogs of different breeds and sizes. A total of twenty-one healthy adult female dogs (body weight ranging 5·0–30·6 kg) were used. The maintenance diet for the dogs was supplemented with increasing amounts of RS from two sources: high-amylose starch from maize (to 2·5, 4·3 and 7·4 % RS) and raw potato starch (to 7·4 and 11·4 % RS). Each level of RS was tested over a 7 d period followed by a 7 d washout period. Faecal scores were evaluated by one person using a scale ranging from 1 (for hard and dry faeces) to 5 (for liquid stools). Faeces were considered ‘optimal’ at scores of 2·5–3·0, ‘acceptable’ at scores of 3·0–3·75 and ‘unacceptable’ at scores >3·75. Small dogs showed very little sensitivity to RS based on the faecal score, while large dogs were quite responsive to RS supplementation. These results suggest that small dogs are poor models for assessing the effect of starch sources on ileal digestibility. They also indicate that a low RS content (strongly affected by source and processing) is an important factor for ensuring an optimal faecal score in large breed dogs.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Estefania Julia Dierings de Souza ◽  
Aline Machado Pereira ◽  
Mauro Fontana ◽  
Nathan Levien Vanier ◽  
Marcia Arocha Gularte

PurposeThe objective of this study was to evaluate the effects of rice flour obtained from rice grains with different levels of amylose on technological, nutritional and sensory properties of cookies made with a blend of rice and cowpea flour.Design/methodology/approachThe cookies preparation was set at a ratio of rice flour and cowpea beans 70:30. The studied formulations were: LA: low amylose rice flour; MA: medium-amylose rice flour; HA: high amylose rice flour. The quality of the obtained cookies was analyzed for proximate composition, in vitro protein digestibility, thickness, diameter, dispersion factor, texture, color, amino acid profile and sensory properties.FindingsProximate composition and in vitro protein digestibility showed no differences between the three studied formulations. The medium and low amylose rice flour cookies showed the lowest hardness values. The combination of rice and beans allowed a good balance of essential amino acids. The cookies formulated with high amylose rice flour presented lighter coloration, low hardness and greater sensory preference.Originality/valueRice and cowpea flours are an alternative source for the preparation of gluten-free bakery products, such as cookies. The high amylose content of rice flour has less negative interference in the texture characteristics of the cookies. The combination of rice and beans flour provides a balance of essential amino acids.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1316
Author(s):  
Federica Taddei ◽  
Elena Galassi ◽  
Francesca Nocente ◽  
Laura Gazza

The demand for gluten-free products, including pasta, is increasing and rice pasta accounts for the largest share of this market. Usually, the production of rice pasta requires additives or specific technological processes able to improve its texture, cooking quality, and sensory properties. In this work, two rice cultivars, with different amylose content, were subjected to parboiling, micronization, and flour air fractionation to obtain brown rice pasta, without any supplement but rice itself. In particular, two types of pasta (spaghetti shape) were produced, one from 100% micronized wholemeal, and the other from refined rice flour replaced with 15% of the air-fractionated fine fraction. Regardless of the cultivar, pasta from wholemeal micronized flour showed higher protein and fiber content than refined flour enriched with fine fraction, whereas no differences were revealed in resistant starch and antioxidant capacity. Pasta from the high amylose content genotype showed the highest resistant starch content and the lowest predicted glycemic index along with sensorial characteristics as good as durum semolina pasta in fine fraction enriched pasta. Besides the technological processes, pasta quality was affected the most by the genotype, since pasta obtained from high amylose cv Gladio resulted in the best in terms of technological and sensory quality.


2021 ◽  
Author(s):  
Maryam Shamloo ◽  
Rebecca Mollard ◽  
Haizhou Wang ◽  
Kulwant Kingra ◽  
Navdeep Tangri ◽  
...  

Abstract Background: Chronic kidney disease (CKD) is associated with a reduced quality of life and an increased risk of kidney failure, cardiovascular events, and all-cause mortality. Accumulation of nitrogen-based uremic toxins leads to worsening of symptoms in individuals with CKD. Many uremic toxins, such as indoxyl and p-cresol sulphate, are produced exclusively by the gut microbiome through the proteolytic digestion of aromatic amino acids. Strategies to reduce the production of these toxins by the gut microbiome in individuals with CKD may lessen symptom burden and delay the onset of dialysis. One such strategy is to change the overall metabolism of the gut microbiome so that less uremic toxins are produced. This can be accomplished by manipulating the energy source available to the microbiome. Fermentable carbohydrates which reach the gut microbiome, like resistant starch (RS), have been shown to inhibit or reduce bacterial amino acid metabolism. This study aims to investigate the the effects of resistant potato starch (RPS) as a prebiotic in individuals with CKD before the onset of dialysis. Methods: This is a double blind, randomized two-period crossover trial. 36 eligible participants will consent to follow a 26-week study regimen. Participants will receive 2 sachets per day containing either 15 grams of RPS (MSPrebiotic, resistant potato starch treatment) or 15 grams corn starch (Amioca TF, digestible starch control). Changes in blood uremic toxins will be investigated as the primary outcome. Secondary outcomes include the effect of RPS consumption on symptoms, quality of life and the abundance, diversity and functionality of the gut microbiome.Discussion: This pilot randomized trial will provide further insight into whether the consumption of RPS as a prebiotic will reduce uremic toxins and symptoms in individuals who have CKD. Trial registration: NCT04961164


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1795
Author(s):  
Norshahira Roslan ◽  
Shayfull Zamree Abd Rahim ◽  
Abdellah El-hadj Abdellah ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Katarzyna Błoch ◽  
...  

Achieving good quality of products from plastic injection moulding processes is very challenging, since the process comprises many affecting parameters. Common defects such as warpage are hard to avoid, and the defective parts will eventually go to waste, leading to unnecessary costs to the manufacturer. The use of recycled material from postindustrial waste has been studied by a few researchers. However, the application of an optimisation method by which to optimise processing parameters to mould parts using recycled materials remains lacking. In this study, Response Surface Methodology (RSM) and Particle Swarm Optimisation (PSO) methods were conducted on thick plate parts moulded using virgin and recycled low-density polyethylene (LDPE) materials (100:0, 70:30, 60:40 and 50:50; virgin to recycle material ratios) to find the optimal input parameters for each of the material ratios. Shrinkage in the x and y directions increased in correlation with the recycled ratio, compared to virgin material. Meanwhile, the tensile strength of the thick plate part continued to decrease when the recycled ratio increased. R30 (70:30) had the optimum shrinkage in the x direction with respect to R0 (100:0) material where the shrinkage increased by 24.49% (RSM) and 33.20% (PSO). On the other hand, the shrinkage in the y direction for R30 material increased by 4.48% (RSM) and decreased by 2.67% (PSO), while the tensile strength of R30 (70:30) material decreased by 0.51% (RSM) and 2.68% (PSO) as compared to R0 (100:0) material. Validation tests indicated that the optimal setting of processing parameter suggested by PSO and RSM for R0 (100:0), R30 (70:30), R40 (60:40) and R50 (50:50) was less than 10%.


2021 ◽  
Vol 11 (5) ◽  
pp. 2153
Author(s):  
Nadia Giuffrida ◽  
Maja Stojaković ◽  
Elen Twrdy ◽  
Matteo Ignaccolo

Container terminals are the main hubs of the global supply chain but, conversely, they play an important role in energy consumption, environmental pollution and even climate change due to carbon emissions. Assessing the environmental impact of this type of port terminal and choosing appropriate mitigation measures is essential to pursue the goals related to a clean environment and ensuring a good quality of life of the inhabitants of port cities. In this paper the authors present a Terminal Decision Support Tool (TDST) for the development of a container terminal that considers both operation efficiency and environmental impacts. The TDST provides environmental impact mitigation measures based on different levels of evolution of the port’s container traffic. An application of the TDST is conducted on the Port of Augusta (Italy), a port that is planning infrastructural interventions in coming years in order to gain a new role as a reference point for container traffic in the Mediterranean.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2523
Author(s):  
Janusz W. Sikora ◽  
Łukasz Majewski ◽  
Andrzej Puszka

Four different plastics were tested: potato starch based plastic (TPS-P)–BIOPLAST GF 106/02; corn starch based plastic (TPS-C)–BioComp BF 01HP; polylactic acid (polylactide) plastic (PLA)—BioComp BF 7210 and low density polyethylene, trade name Malen E FABS 23-D022; as a petrochemical reference sample. Using the blown film extrusion method and various screw rotational speeds, films were obtained and tested, as a result of which the following were determined: breaking stress, strain at break, static and dynamic friction coefficient of film in longitudinal and transverse direction, puncture resistance and strain at break, color, brightness and gloss of film, surface roughness, barrier properties and microstructure. The biodegradable plastics tested are characterized by comparable or even better mechanical strength than petrochemical polyethylene for the range of film blowing processing parameters used here. The effect of the screw rotational speed on the mechanical characteristics of the films obtained was also demonstrated. With the increase in the screw rotational speed, the decrease of barrier properties was also observed. No correlation between roughness and permeability of gases and water vapor was shown. It was indicated that biodegradable plastics might be competitive for conventional petrochemical materials used in film blowing niche applications where cost, recyclability, optical and water vapor barrier properties are not critical.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 177-177
Author(s):  
Gabriela E Martinez Padilla ◽  
Rajesh Jha ◽  
Vivek Fellner ◽  
Eric van Heugten

Abstract This study evaluated short-chain fatty acid (SCFA) production from purified fiber sources when fermented in vitro using pig cecal contents as an inoculum. Fiber sources of interest were inulin from chicory root (native and long-chain inulin with 90 and 98% fiber, respectively), pectin from citrus peel (high methoxyl pectin), resistant starch (native starch), potato starch (commercial grade), and β-glucan (β-1,3;β-1,6 yeast-derived). Cellulose and cornstarch were used as indigestible and highly digestible carbohydrates, respectively. Triplicate samples of substrates (2 g) were subjected to enzymatic hydrolysis with pepsin and pancreatin for 6 h. Subsequently, hydrolyzed residues (200 mg) were incubated under anaerobic conditions at 39°C with 30 mL solution of cecal inoculum collected from 3 sows fed a standard commercial diet and buffered mineral solution. After 48 h of incubation, solutions from fermented samples were analyzed for pH, SCFA, and branched-chain fatty acids (BCFA) using gas-liquid chromatography. Enzymatic hydrolysis had no effect on digestion of β-glucan, but total SCFA concentration after fermentation was highest (26.13 mmol/g) followed by resistant starch (22.61 mmol/g) and potato starch (22.20 mmol/g) and was lowest for cellulose (13.91 mmol/g). In contrast, native inulin was highly digested during enzymatic hydrolysis, resulting in the lowest substrate available for fermentation (11.84% DM) and the highest pH (5.98). Enzymatic hydrolysis and fermentation of resistant starch increased (P< 0.001) concentrations of acetate (0.60 mg/g), whereas potato starch and β-glucan yielded more butyrate (0.60 and 0.54 mg/g respectively), and β-glucan resulted in greater (P< 0.001) propionate concentrations (0.69 mg/g). Pectin resulted in the highest fermentation (82.38% DM disappearance) and the lowest pH (4.03) compared to the other fiber sources (P< 0.001) and yielded the lowest BCFA concentration (1.89 mM, P< 0.001). Results suggest that fermentation of resistant starch, potato starch, and β-glucan produced higher SCFA concentrations, while pectin resulted in a decreased pH of fermentation solution.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4418 ◽  
Author(s):  
Aleksandra Sekrecka ◽  
Michal Kedzierski

Commonly used image fusion techniques generally produce good results for images obtained from the same sensor, with a standard ratio of spatial resolution (1:4). However, an atypical high ratio of resolution reduces the effectiveness of fusion methods resulting in a decrease in the spectral or spatial quality of the sharpened image. An important issue is the development of a method that allows for maintaining simultaneous high spatial and spectral quality. The authors propose to strengthen the pan-sharpening methods through prior modification of the panchromatic image. Local statistics of the differences between the original panchromatic image and the intensity of the multispectral image are used to detect spatial details. The Euler’s number and the distance of each pixel from the nearest pixel classified as a spatial detail determine the weight of the information collected from each integrated image. The research was carried out for several pan-sharpening methods and for data sets with different levels of spectral matching. The proposed solution allows for a greater improvement in the quality of spectral fusion, while being able to identify the same spatial details for most pan-sharpening methods and is mainly dedicated to Intensity-Hue-Saturation based methods for which the following improvements in spectral quality were achieved: about 30% for the urbanized area and about 15% for the non-urbanized area.


Sign in / Sign up

Export Citation Format

Share Document