scholarly journals Fish oil supplemented for 9 months does not improve glycaemic control or insulin sensitivity in subjects with impaired glucose regulation: a parallel randomised controlled trial

2015 ◽  
Vol 115 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Louise F. Clark ◽  
M. C. Thivierge ◽  
Claire A. Kidd ◽  
Susan C. McGeoch ◽  
Prakash Abraham ◽  
...  

AbstractThe effects of fish oil (FO) supplementation on glycaemic control are unclear, and positive effects may occur only when the phospholipid content of tissue membranes exceeds 14 % asn-3 PUFA. Subjects (n36, thirty-three completed) were paired based on metabolic parameters and allocated into a parallel double-blind randomised trial with one of each pair offered daily either 6 g of FO (3·9 gn-3 PUFA) or 6 g of maize oil (MO) for 9 months. Hyperinsulinaemic–euglycaemic–euaminoacidaemic (HIEGEAA) clamps (with [6,62H2glucose]) were performed at the start and end of the intervention. Endogenous glucose production (EGP) and whole-body protein turnover (WBPT) were each measured after an overnight fast. The primary outcome involved the effect of oil type on insulin sensitivity related to glycaemic control. The secondary outcome involved the effect of oil type on WBPT. Subjects on FO (n16) had increased erythrocyten-3 PUFA concentrations >14 %, whereas subjects on MO (n17) had unalteredn-3 PUFA concentrations at 9 %. Type of oil had no effect on fasting EGP, insulin sensitivity or total glucose disposal during the HIEGEAA clamp. In contrast, under insulin-stimulated conditions, total protein disposal (P=0·007) and endogenous WBPT (P=0·001) were both increased with FO. In an associated pilot study (n4, three completed), althoughn-3 PUFA in erythrocyte membranes increased to >14 % with the FO supplement, the enrichment in muscle membranes remained lower (8 %;P<0·001). In conclusion, long-term supplementation with FO, at amounts near the safety limits set by regulatory authorities in Europe and the USA, did not alter glycaemic control but did have an impact on WBPT.

Diabetologia ◽  
2021 ◽  
Author(s):  
Trine Moholdt ◽  
Evelyn B. Parr ◽  
Brooke L. Devlin ◽  
Julia Debik ◽  
Guro Giskeødegård ◽  
...  

Abstract Aims/hypothesis We determined whether the time of day of exercise training (morning vs evening) would modulate the effects of consumption of a high-fat diet (HFD) on glycaemic control, whole-body health markers and serum metabolomics. Methods In this three-armed parallel-group randomised trial undertaken at a university in Melbourne, Australia, overweight/obese men consumed an HFD (65% of energy from fat) for 11 consecutive days. Participants were recruited via social media and community advertisements. Eligibility criteria for participation were male sex, age 30–45 years, BMI 27.0–35.0 kg/m2 and sedentary lifestyle. The main exclusion criteria were known CVD or type 2 diabetes, taking prescription medications, and shift-work. After 5 days, participants were allocated using a computer random generator to either exercise in the morning (06:30 hours), exercise in the evening (18:30 hours) or no exercise for the subsequent 5 days. Participants and researchers were not blinded to group assignment. Changes in serum metabolites, circulating lipids, cardiorespiratory fitness, BP, and glycaemic control (from continuous glucose monitoring) were compared between groups. Results Twenty-five participants were randomised (morning exercise n = 9; evening exercise n = 8; no exercise n = 8) and 24 participants completed the study and were included in analyses (n = 8 per group). Five days of HFD induced marked perturbations in serum metabolites related to lipid and amino acid metabolism. Exercise training had a smaller impact than the HFD on changes in circulating metabolites, and only exercise undertaken in the evening was able to partly reverse some of the HFD-induced changes in metabolomic profiles. Twenty-four-hour glucose concentrations were lower after 5 days of HFD compared with the participants’ habitual diet (5.3 ± 0.4 vs 5.6 ± 0.4 mmol/l, p = 0.001). There were no significant changes in 24 h glucose concentrations for either exercise group but lower nocturnal glucose levels were observed in participants who trained in the evening, compared with when they consumed the HFD alone (4.9 ± 0.4 vs 5.3 ± 0.3 mmol/l, p = 0.04). Compared with the no-exercise group, peak oxygen uptake improved after both morning (estimated effect 1.3 ml min−1 kg−1 [95% CI 0.5, 2.0], p = 0.003) and evening exercise (estimated effect 1.4 ml min−1 kg−1 [95% CI 0.6, 2.2], p = 0.001). Fasting blood glucose, insulin, cholesterol, triacylglycerol and LDL-cholesterol concentrations decreased only in participants allocated to evening exercise training. There were no unintended or adverse effects. Conclusions/interpretation A short-term HFD in overweight/obese men induced substantial alterations in lipid- and amino acid-related serum metabolites. Improvements in cardiorespiratory fitness were similar regardless of the time of day of exercise training. However, improvements in glycaemic control and partial reversal of HFD-induced changes in metabolic profiles were only observed when participants exercise trained in the evening. Trial registration anzctr.org.au registration no. ACTRN12617000304336. Funding This study was funded by the Novo Nordisk Foundation (NNF14OC0011493). Graphical abstract


BMJ Open ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. e028632 ◽  
Author(s):  
Robin Bekrater-Bodmann ◽  
Annette Löffler ◽  
Stefano Silvoni ◽  
Lutz Frölich ◽  
Lucrezia Hausner ◽  
...  

IntroductionDementia (particularly Alzheimer’s disease, AD) is a major cause of impaired cognitive functions in the elderly. Amnestic mild cognitive impairment (aMCI) is a prodromal stage of AD, if substantiated by Alzheimer biomarkers. A neuroscientific model of pathological ageing emphasises the loss of brain plasticity, sensorimotor capacities and subsequent cognitive decline. A mechanistic treatment targeting dysfunctional plastic changes associated with ageing should be efficacious in delaying AD. In this trial, we aim to evaluate the effectiveness of a newly developed sensorimotor training, delivered at home, combined with personalised reinforcement, on the progression of aMCI-related cognitive impairments.Methods and analysisIn a randomised trial, we will compare two aMCI groups (30 subjects each), randomly allocated to a sensorimotor or a cognitive control training. Both trainings consist of an adaptive algorithm, and will last 3 months each. We hypothesise that both trainings will have positive effects on cognitive function with the sensorimotor training being superior compared with the control training based on its improvement in basic perceptual skills underlying memory encoding and retrieval. The primary outcome is episodic memory function, improved hippocampal function during memory tasks will be a secondary outcome. As further exploratory outcomes, we expect improved segregation in sensory and motor maps, better sensory discrimination only in the sensorimotor training and reduced transition to dementia (examined after completion of this study). We expect the experimental training to be evaluated more positively by the users compared with the cognitive training, resulting in reduced rates of discontinuation.Ethics and disseminationThe Ethics Committee of the Medical Faculty Mannheim, Heidelberg University, approved the study (2015–543N-MA), which adheres to the Declaration of Helsinki. The results will be published in a peer-reviewed journal. Access to raw data is available on request.Trial registration numberDRKS00012748.


2020 ◽  
Vol 125 (2) ◽  
pp. 147-160
Author(s):  
Mariana O. C. Coelho ◽  
Alistair J. Monteyne ◽  
Marlou L. Dirks ◽  
Tim J. A. Finnigan ◽  
Francis B. Stephens ◽  
...  

AbstractMycoprotein consumption has been shown to improve acute postprandial glycaemic control and decrease circulating cholesterol concentrations. We investigated the impact of incorporating mycoprotein into the diet on insulin sensitivity (IS), glycaemic control and plasma lipoprotein composition. Twenty healthy adults participated in a randomised, parallel-group trial in which they consumed a 7 d fully controlled diet where lunch and dinner contained either meat/fish (control group, CON) or mycoprotein (MYC) as the primary source of dietary protein. Oral glucose tolerance tests were performed pre- and post-intervention, and 24 h continuous blood glucose monitoring was applied throughout. Fasting plasma samples were obtained pre- and post-intervention and were analysed using quantitative, targeted NMR-based metabonomics. There were no changes within or between groups in blood glucose or serum insulin responses, nor in IS or 24 h glycaemic profiles. No differences between groups were found for 171 of the 224 metabonomic targets. Forty-five lipid concentrations of different lipoprotein fractions (VLDL, LDL, intermediate-density lipoprotein and HDL) remained unchanged in CON but showed a coordinated decrease (7–27 %; all P < 0·05) in MYC. Total plasma cholesterol, free cholesterol, LDL-cholesterol, HDL2-cholesterol, DHA and n-3 fatty acids decreased to a larger degree in MYC (14–19 %) compared with CON (3–11 %; P < 0·05). Substituting meat/fish for mycoprotein twice daily for 1 week did not modulate whole-body IS or glycaemic control but resulted in changes to plasma lipid composition, the latter primarily consisting of a coordinated reduction in circulating cholesterol-containing lipoproteins.


2020 ◽  
Vol 319 (3) ◽  
pp. E519-E528
Author(s):  
Thomas Tsiloulis ◽  
Arthe Raajendiran ◽  
Stacey N. Keenan ◽  
Geraldine Ooi ◽  
Renea A. Taylor ◽  
...  

Regional distribution of adipose tissue is an important factor in conferring cardiometabolic risk and obesity-related morbidity. We tested the hypothesis that human visceral adipose tissue (VAT) impairs glucose homeostasis, whereas subcutaneous glutealfemoral adipose tissue (GFAT) protects against the development of impaired glucose homeostasis in mice. VAT and GFAT were collected from patients undergoing bariatric surgery and grafted onto the epididymal adipose tissue of weight- and age-matched severe, combined immunodeficient mice. SHAM mice underwent surgery without transplant of tissue. Mice were fed a high-fat diet after xenograft. Energy homeostasis, glucose metabolism, and insulin sensitivity were assessed 6 wk later. Xenograft of human adipose tissues was successful, as determined by histology, immunohistochemical evaluation of collagen deposition and angiogenesis, and maintenance of lipolytic function. Adipose tissue transplant did not affect energy expenditure, food intake, whole body substrate partitioning, or plasma free fatty acid, triglyceride, and insulin levels. Fasting blood glucose was significantly reduced in GFAT and VAT compared with SHAM, whereas glucose tolerance was improved only in mice transplanted with VAT compared with SHAM mice. This improvement was not associated with differences in whole body insulin sensitivity or plasma insulin between groups. Together, these data suggest that VAT improves glycemic control and GFAT does not protect against the development of high-fat diet-induced glucose intolerance. Hence, the intrinsic properties of VAT and GFAT do not necessarily explain the postulated negative and positive effects of these adipose tissue depots on metabolic health.


2012 ◽  
Vol 120 (05) ◽  
pp. 266-272 ◽  
Author(s):  
R. Nielsen ◽  
H. Wiggers ◽  
M. Halbirk ◽  
H. Bøtker ◽  
J. Holst ◽  
...  

AbstractWe studied the metabolic effects of 48-h GLP-1 treatment in insulin resistant heart failure patients.In a randomized placebo-controlled double-blinded cross-over study, 11 non-diabetic HF patients with IHD received 48-h GLP-1 and placebo-infusion. We applied OGTT, hyperinsulinemic clamp, indirect calorimetry, forearm, and tracer methods.7 insulin resistant HF (EF 28%±2) patients completed the protocol. GLP-1 decreased plasma glucose levels (p=0.048) and improved glucose tolerance. 4 patients had hypoglycemic events during GLP-1 vs. none during placebo. GLP-1 treatment tended to increase whole body protein turnover (p=0.08) but did not cause muscle wasting. No significant changes in circulating levels of insulin, glucagon, free fatty acids or insulin sensitivity were detected.GLP-1 treatment decreased glucose levels and increased glucose tolerance in insulin resistant HF patients with IHD. Hypoglycemia was common and may limit the use of GLP-1 in these patients. Insulin sensitivity, lipid-, and protein metabolism remained unchanged.Data were collected at the examinational laboratories of Department of Endocrinology and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark


2007 ◽  
Vol 579 (1) ◽  
pp. 269-284 ◽  
Author(s):  
Andrée-Anne Gingras ◽  
Phillip James White ◽  
P. Yvan Chouinard ◽  
Pierre Julien ◽  
Teresa A. Davis ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1408-P
Author(s):  
KIMBERLY VESCO ◽  
NICOLE E. MARSHALL ◽  
WILLIAM ROONEY ◽  
MICHAEL C. LEO ◽  
ERIC BAETSCHER ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1741-P
Author(s):  
GOTARO TODA ◽  
KOTARO SOEDA ◽  
NAOKO ARAKAWA ◽  
YUKARI MASUDA ◽  
NAOKI KOBAYASHI ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 459-P
Author(s):  
LEIGH GOEDEKE ◽  
NOEMI ROTLLAN ◽  
KESHIA TOUSSAINT ◽  
ALI NASIRI ◽  
XINBO ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document