Seed treatment with glycine betaine enhances tolerance of cotton to chilling stress

2018 ◽  
Vol 156 (3) ◽  
pp. 323-332 ◽  
Author(s):  
C. Cheng ◽  
L. M. Pei ◽  
T. T. Yin ◽  
K. W. Zhang

AbstractChilling injury is an important natural stress that can threaten cotton production, especially at the sowing and seedling stages in early spring. It is therefore important for cotton production to improve chilling tolerance at these stages. The current work examines the potential for glycine betaine (GB) treatment of seeds to increase the chilling tolerance of cotton at the seedling stage. Germination under cold stress was increased significantly by GB treatment. Under low temperature, the leaves of seedlings from treated seeds exhibited a higher net photosynthetic rate (PN), higher antioxidant enzyme activity including superoxide dismutase, ascorbate peroxidase and catalase, lower hydrogen peroxide (H2O2) content and less damage to the cell membrane. Enzyme activity was correlated negatively with H2O2 content and degree of damage to the cell membrane but correlated positively with GB content. The experimental results suggested that although GB was only used to treat cotton seed, the beneficial effect caused by the preliminary treatment of GB could play a significant role during germination that persisted to at least the four-leaf seedling stage. Therefore, it is crucial that this method is employed in agricultural production to improve chilling resistance in the seedling stage by soaking the seeds in GB.

2021 ◽  
Vol 22 (23) ◽  
pp. 12910
Author(s):  
Xiaowei Zhang ◽  
Yanyan Zhang ◽  
Chenxiao Xu ◽  
Kun Liu ◽  
Huangai Bi ◽  
...  

Hydrogen sulfide (H2S) plays a crucial role in regulating chilling tolerance. However, the role of hydrogen peroxide (H2O2) and auxin in H2S-induced signal transduction in the chilling stress response of plants was unclear. In this study, 1.0 mM exogenous H2O2 and 75 μM indole-3-acetic acid (IAA) significantly improved the chilling tolerance of cucumber seedlings, as demonstrated by the mild plant chilling injury symptoms, lower chilling injury index (CI), electrolyte leakage (EL), and malondialdehyde content (MDA) as well as higher levels of photosynthesis and cold-responsive genes under chilling stress. IAA-induced chilling tolerance was weakened by N, N′-dimethylthiourea (DMTU, a scavenger of H2O2), but the polar transport inhibitor of IAA (1-naphthylphthalamic acid, NPA) did not affect H2O2-induced mitigation of chilling stress. IAA significantly enhanced endogenous H2O2 synthesis, but H2O2 had minimal effects on endogenous IAA content in cucumber seedlings. In addition, the H2O2 scavenger DMTU, inhibitor of H2O2 synthesis (diphenyleneiodonium chloride, DPI), and IAA polar transport inhibitor NPA reduced H2S-induced chilling tolerance. Sodium hydrosulfide (NaHS) increased H2O2 and IAA levels, flavin monooxygenase (FMO) activity, and respiratory burst oxidase homolog (RBOH1) and FMO-like protein (YUCCA2) mRNA levels in cucumber seedlings. DMTU, DPI, and NPA diminished NaHS-induced H2O2 production, but DMTU and DPI did not affect IAA levels induced by NaHS during chilling stress. Taken together, the present data indicate that H2O2 as a downstream signal of IAA mediates H2S-induced chilling tolerance in cucumber seedlings.


2020 ◽  
Vol 47 (1) ◽  
pp. 80
Author(s):  
Meng Li ◽  
Xiaoyu Duan ◽  
Qian Wang ◽  
Wei Chen ◽  
Hongyan Qi

Low temperature restrains the growth and development of melons, as well as severely impairing the yield and quality. To obtain a rapid and accurate method for evaluating cold tolerance of melon, 10 genotypes were selected to investigate their cold tolerance at seedling stage. Chilling stress (15°C/6°C, day/night) increased leaf angles and caused leaves wilted: the phenotypes of the 10 genotypes were obviously different. Thus, a new predicted method for chilling injury index (CII) of melon was constructed based on the change of leaf angle and leaf state. The CII showed significant correlation with survival rate, maximum photochemical quantum yield of PSII (Fv/Fm) and changes of SPAD value. Moreover, the validity of the method was further verified by seedlings growth, photosynthesis, membrane permeability and metabolites accumulation of four screened genotypes. Taken together, this work provides a morphological and accurate method for evaluating cold tolerance in melon.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 645b-645
Author(s):  
Kanogwan Kerdnaimongkol ◽  
Anju Bhatia ◽  
Robert J. Joly ◽  
William R. Woodson

Diurnal variation in the chilling sensitivity of tomato seedlings was examined. Sensitivity to chilling in tomato seedlings is a response to light and not under the control of a circadian rhythm. Chilling sensitivity is highest in seedlings chilled at the end of the dark period, and these seedlings become more resistant to chilling injury upon exposure to the light. Diurnal variation in chilling sensitivity was associated with changes in catalase and superoxide dismutase activities. The results show an increase in catalase and superoxide dismutase activities at the end of the light period. The recovery of the net photosynthesis rate following chilling was faster in seedlings chilled at the end of the light period. It is suggested that an increase in catalase and superoxide dismutase activities at the end of light period before the chilling plays a role in the resistance to chilling stress in tomato seedlings. Forty-eight hours of 14°C acclimation or hydrogen peroxide pretreatment conferred chilling tolerance to tomato seedlings and were correlated with elevated catalase activity. Acclimated seedlings still exhibited diurnal variation in chilling sensitivity while hydrogen peroxide treated seedlings showed little evidence of a diurnal variation in chilling sensitivity. Transgenic tomato plants expressing an antisense catalase gene were generated. A several-fold decrease in total catalase has been detected in the leaf extracts of transformants. Preliminary analysis of these plants indicated that modification of reactive oxygen species scavenging in plant system can lead to change in oxidative stress tolerance.


2018 ◽  
Vol 143 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Lijian Liang ◽  
Yanming Deng ◽  
Xiaobo Sun ◽  
Xinping Jia ◽  
Jiale Su

Nitric oxide (NO) is well known for its multifaceted physiological roles as a signaling molecule in plants. Previous studies have indicated that exogenous application of NO may be useful for alleviating chilling injury (CI) in fruits and vegetables. However, the potential role and mechanism of NO in mitigating chilling stress in anthurium (Anthurium andraeanum) remain unclear. In this study, physiological and biochemical analysis were performed to investigate the effects of exogenous NO in alleviating CI in anthurium. Anthurium seedling plants were treated with the NO donor sodium nitroprusside (SNP) at four concentrations (0, 0.2, 0.4, and 0.8 mm) and stored at 12/5 °C (day/night) for 15 day. The results showed that exogenous SNP mitigated the adverse effects of chilling on anthurium, and the most effective concentration was 0.2 mm. In addition, NO effectively improved the CI index, malondialdehyde (MDA) content, electrolyte leakage, photochemical efficiency (Fv/Fm), and chlorophyll loss of anthurium during low temperatures. Pretreatment with SNP also increased the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX); the content of antioxidants including glutathione (GSH), ascorbic acid (AsA), and phenolics; and reduced the accumulation of hydrogen peroxide and O2−. SNP pretreatment at 0.2 mm also significantly promoted the accumulation of proline, increased the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS), and reduced the activity of proline dehydrogenase (PDH), when compared with control (0 mm SNP→Chilling) under chilling stress. These results indicated that NO could enhance the chilling tolerance of anthurium by elicitation of an antioxidant response and proline accumulation for maintaining cell membrane integrity.


2019 ◽  
Vol 18 (2) ◽  
pp. 29-37 ◽  
Author(s):  
Fardin Ghanbari ◽  
Sajad Kordi

Chilling stress is of major limiting factors influencing the growth and development of warm-season crops like cucumber. In this research, the possibility of chilling tolerance of cucumber seedlings was investigated through employing the drought and low-temperature pretreatments. The factorial experiment consisted of two factors including cucumber cultivars (i.e. ‘Super Dominos’ and ‘Super Star’) and hardening treatments (control, low temperatures at 10°C, and 15°C and drought simulated by 10% and 20% PEG) based on completely randomized design (CRD) in 3 replications. After applying treatments and providing them 48 h opportunity to be recovered, the seedlings were subjected to 3°C for a six-day period and 6 h for each day. All hardening treatments improved seedlings’ growth, chlorophyll content, total phenol (TP) and antioxidant enzyme activities, while reducing chilling injury index and malondialdehyde (MDA) content. Comparing to temperature hardening, the drought pretreatment showed to have a better effect on inducing the chilling tolerance into cultivars. Overall, the results of this experiment showed that employing drought and low-temperature pretreatments enabled cucumber seedlings to mitigate the harmful effects of chilling.


Author(s):  
Abdullah Al Mamun Sohag ◽  
Md Tahjib-Ul-Arif ◽  
Sonya Afrin ◽  
Md Kawsar Khan ◽  
Md. Abdul Hannan ◽  
...  

Being a chilling-sensitive staple crop, rice (Oryza sativa L.) is vulnerable to climate change. The competence of rice to withstand chilling stress should, therefore, be enhanced through technological tools. The present study employed chemical intervention like application of sodium nitroprusside (SNP) as nitric oxide (NO) donor and elucidated the underlying molecular mechanisms of NO-mediated chilling tolerance in rice. At germination stage, germination indicators were interrupted by chilling stress (5.0 ± 1.0°C for 8 h day‒1), while pretreatment with 100 μM SNP markedly improved the indicators. At seedling stage (14-day-old), chilling stress caused stunted growth with visible toxicity along with alteration of biochemical markers, for example, increase in oxidative stress markers (superoxide, hydrogen peroxide, and malondialdehyde) and osmolytes (total soluble sugar; proline and soluble protein content, SPC), and decrease in chlorophyll (Chl), relative water content (RWC), and antioxidants. However, NO application attenuated toxicity symptoms with improving growth performance which might be attributed to enhanced activities of antioxidants, mineral contents, Chl, RWC and SPC. Furthermore, principal component analysis indicated that water imbalance and increased oxidative damage were the main contributors to chilling injury, whereas NO-mediated mineral homeostasis and antioxidant defense were the critical determinants for chilling tolerance in rice. Collectively, our findings revealed that NO protects against chilling stress through valorizing cellular defense mechanisms, suggesting that exogenous application of NO could be a potential tool to evolve cold tolerance as well as climate resilience in rice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaowei Zhang ◽  
Yiqing Feng ◽  
Tongtong Jing ◽  
Xutao Liu ◽  
Xizhen Ai ◽  
...  

Chilling adversely affects the photosynthesis of thermophilic plants, which further leads to a decline in growth and yield. The role of melatonin (MT) in the stress response of plants has been investigated, while the mechanisms by which MT regulates the chilling tolerance of chilling-sensitive cucumber remain unclear. This study demonstrated that MT positively regulated the chilling tolerance of cucumber seedlings and that 1.0 μmol⋅L–1 was the optimum concentration, of which the chilling injury index, electrolyte leakage (EL), and malondialdehyde (MDA) were the lowest, while growth was the highest among all treatments. MT triggered the activity and expression of antioxidant enzymes, which in turn decreased hydrogen peroxide (H2O2) and superoxide anion (O2⋅–) accumulation caused by chilling stress. Meanwhile, MT attenuated the chilling-induced decrease, in the net photosynthetic rate (Pn) and promoted photoprotection for both photosystem II (PSII) and photosystem I (PSI), regarding the higher maximum quantum efficiency of PSII (Fv/Fm), actual photochemical efficiency (ΦPSII), the content of active P700 (ΔI/I0), and photosynthetic electron transport. The proteome analysis and western blot data revealed that MT upregulated the protein levels of PSI reaction center subunits (PsaD, PsaE, PsaF, PsaH, and PsaN), PSII-associated protein PsbA (D1), and ribulose-1,5-bisphosphate carboxylase or oxygenase large subunit (RBCL) and Rubisco activase (RCA). These results suggest that MT enhances the chilling tolerance of cucumber through the activation of antioxidant enzymes and the induction of key PSI-, PSII-related and carbon assimilation genes, which finally alleviates damage to the photosynthetic apparatus and decreases oxidative damage to cucumber seedlings under chilling stress.


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Xiangli Sun ◽  
Zebin Yuan ◽  
Bo Wang ◽  
Liping Zheng ◽  
Jianzhong Tan ◽  
...  

Abstract Background Chilling stress is the major factor limiting plant productivity and quality in most regions of the world. In the present study, we aimed to evaluate the effects of putrescine (Put) and polyamine inhibitor d-arginine (d-arg) on the chilling tolerance of anthurium (Anthurium andraeanum). Results Anthurium seedlings were pretreated with five different concentrations of Put solution or d-arg solution. Subsequently, the seedlings were subjected to chilling stress at 6 °C for 3 days, followed by a recovery at 25 °C for 1 day. Relative permeability of the plasma membrane, as well as physiological and morphologic parameters was assessed during the experiments. Additionally, transcriptome sequencing and patterns of differential gene expression related to chilling response were analyzed by qRT-PCR in 1.0 mM Put-treated and untreated anthurium seedlings. Results indicated that the supplementation of exogenous Put decreased the extent of membrane lipid peroxidation and the accumulation of malondialdehyde (MDA), promoted the antioxidant activities and proline content and maintained the morphologic performances compared with the control group. This finding indicated that the application of exogenous Put could effectively decrease the injury and maintain the quality of anthurium under chilling conditions. In contrast, the treatment of d-arg exhibited the opposite effects, which confirmed the effects of Put. Conclusions This research provided a possible approach to enhance the chilling tolerance of anthurium and reduce the energy consumption used in anthurium production.


Sign in / Sign up

Export Citation Format

Share Document