Determination of usnic and perlatolic acids and identification of olivetoric acids in Northern reindeer lichen (Cladonia stellaris) extracts

2010 ◽  
Vol 42 (6) ◽  
pp. 739-749 ◽  
Author(s):  
Annika I. SMEDS ◽  
Minna-Maarit KYTÖVIITA

AbstractThe ecologically important lichen Cladonia stellaris forms thick carpets in boreal forest floors. In addition to affecting temperature and water conditions in the soil underneath, the secondary metabolites formed by the lichen layer are of ecological interest. In this paper, we investigated the distribution of lichen acids in C. stellaris collected at different latitudes in Finland and developed methods to quantify the two optical enantiomers of usnic acid separately. The lichen extracts were analysed by high-performance liquid chromatography (HPLC) with UV and mass spectrometric (MS) detection and by gas chromatography with flame ionization (GC-FID) and MS detection. Usnic acid and perlatolic acid were quantified using GC-FID. The concentration of usnic acid in the top 20 mm of the lichen thallus ranged from 0·48–3·08% of dry weight, and that of perlatolic acid from 0·08–0·54%. The enantiomeric composition of usnic acid was determined using a chiral HPLC column coupled to an electrospray ionization-tandem mass spectrometer. (−)-Usnic acid was found to be the predominating enantiomer in all extracts; the proportion of (+)-usnic acid ranged from 0·4%–10·0%. Olivetoric acid methyl ester, diphenylmethanol, and 5-pentylresorcinol were identified, and several other olivetoric acid-type compounds were tentatively identified in the extracts.

1981 ◽  
Vol 13 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Dianne Fahselt

AbstractLichen thallus fragments were maintained in a growth cabinet under four differing conditions of light intensity. Levels of usnic acid and atranorin did not differ significantly from the control under any of the treatments. However, perlatolic acid and fumarprotocetraric acid per unit dry weight of thallus were dependent upon light availability.


2019 ◽  
Vol 7 (11) ◽  
pp. 578 ◽  
Author(s):  
Martin Szotkowski ◽  
Dana Byrtusova ◽  
Andrea Haronikova ◽  
Marie Vysoka ◽  
Marek Rapta ◽  
...  

Carotenogenic yeasts are non-conventional oleaginous microorganisms capable of utilizing various waste substrates. In this work, four red yeast strains (Rhodotorula, Cystofilobasidium, and Sporobolomyces sp.) were cultivated in media containing crude, emulsified, and enzymatically hydrolyzed animal waste fat, compared with glucose and glycerol, as single C-sources. Cell morphology (cryo-SEM (cryo-scanning electron microscopy), TEM (transmission electron microscopy)), production of biomass, lipase, biosurfactants, lipids (gas chromatography/flame ionization detection, GC/FID) carotenoids, ubiquinone, and ergosterol (high performance liquid chromatography, HPLC/PDA) in yeast cells was studied depending on the medium composition, the C source, and the carbon/nitrogen (C/N) ratio. All studied strains are able to utilize solid and processed fat. Biomass production at C/N = 13 was higher on emulsified/hydrolyzed fat than on glucose/glycerol. The production of lipids and lipidic metabolites was enhanced for several times on fat; the highest yields of carotenoids (24.8 mg/L) and lipids (54.5%/CDW (cell dry weight)) were found in S. pararoseus. Simultaneous induction of lipase and biosurfactants was observed on crude fat substrate. An increased C/N ratio (13–100) led to higher biomass production in fat media. The production of total lipids increased in all strains to C/N = 50. Oppositely, the production of carotenoids, ubiquinone, and ergosterol dramatically decreased with increased C/N in all strains. Compounds accumulated in stressed red yeasts have a great application potential and can be produced efficiently during the valorization of animal waste fat under the biorefinery concept.


2017 ◽  
Vol 12 (3) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Katarzyna Sułkowska-Ziaja ◽  
Anna Maślanka ◽  
Agnieszka Szewczyk ◽  
Bożena Muszyńska

The content of two groups of compounds with biological activity (non-hallucinogenic indole compounds and free phenolic acids) were analyzed in extracts of fruiting bodies of four species of Phellinus: P. igniarius, P. pini, P. pomaceus and P. robustus. The presence of indole compounds in methanolic extracts was analyzed by high-performance liquid chromatography and thin-layer chromatography coupled with densitometric detection. Three metabolites (serotonin, tryptamine, and L-tryptophan) were identified. The contents of individual indole compounds ranged from 1.70 (tryptamine in P. robustus) to 8.32 mg x 100 g1 dry weight (L-tryptophan in P. robustus). Four free phenolic acids were detected in methanolic extracts by the HPLC method. The total content ranged from 9.9 mg x 100 g1 DW (P. igniarius) to 32.5 mg x 100 g1 DW (P. robustus).


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Suying Ma ◽  
Haixia Lv ◽  
Xiaojun Shang

A high performance liquid chromatographic (HPLC) method with UV detector for the determination of dyclonine hydrochloride and a gas chromatography (GC) method with flame ionization detector (FID) for the determination of camphor and menthol in lotion were developed. The developed HPLC method involved using a SinoChoom ODS-BP C18reversed-phase column (5 μm, 4.6 mm × 200 mm) and mobile phase consisting of acetonitrile : water : triethylamine in a ratio of 45 : 55 : 1.0; pH was adjusted to 3.5 with glacial acetic acid. The developed GC method for determination of camphor and menthol involved using an Agilent 19091J-413 capillary chromatographic column (30 m × 320 μm × 0.25 μm). The two methods were validated according to official compendia guidelines. The calibration of dyclonine hydrochloride for HPLC method was linear over the range of 20–200 μg/mL. The retention time was found at 6.0 min for dyclonine hydrochloride. The calibration of camphor and menthol of GC method was linear over the range of 10–2000 μg/mL. The retention time was found at 2.9 min for camphor and 3.05 min for menthol. The proposed HPLC and GC methods were proved to be suitable for the determination of dyclonine hydrochloride, camphor, and menthol in lotion.


2014 ◽  
Vol 660 ◽  
pp. 297-300
Author(s):  
Nor Hazwani Abdullah ◽  
Sulaiman Hassan

Waste cooking oil has always been an environment problem in food factories and one method of effect disposing this oil without effecting the environment is to convert it to fatty acid methyl ester (FAME) using small scale pilot plant. The conversion of waste cooking oil with sodium hydroxide as a catalyst in conversional process at 22kHz speed. The reaction of time, molar ratio, speed, catalyst and amount of catalyst will be effect in FAME quality. The quality of biodiesel define is total ester content using gas chromatography. Gas chromatography analysis is a one of technique for identification and quantitation of compounds in a biodiesel sample. From biodiesel sample can identification of contaminants and fatty acid methyl ester. In this research biodiesel sample were analyses using a gas chromatography-flame ionization detector ( Perkin Elmer GC Model Clarus 500) equipped with a DB-5 HT capillary column ( 0.53mm x 5 m) J&W Scientific. The analytic conditions for ester content were as follow by: column temperature used 2100C, temperature flame ionization detector (FID) of 2500C, pressure of 80kPa, flow carrier gas of 1ml/min, temperature injector of 2500C, split flow rate of 50ml/min, time for analysis 20 minute and volume injected of 1 μl. The ester content (C), expresses as a mass fraction in present using formula (EN 14103, 2003a) calculation. Conversion of triglyceride (TG) to FAME using conversional process obtained 96.54 % w.t with methanol to oil molar ratio 6:1, 1%w.t acid sulphuric and 1% w.t sodium hydroxide catalyst.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Katarzyna Jagodzińska ◽  
Michał Czerep ◽  
Edyta Kudlek ◽  
Mateusz Wnukowski ◽  
Marek Pronobis ◽  
...  

Abstract To date, few studies on the potential utilization of agricultural residue torrefaction products have been performed. Thus, torrefaction product characterization aimed at its potential utilization was performed. Wheat–barley straw pellets and wheat–rye chaff were used in the study. The impact of the torrefaction temperature (280–320 °C) on polycyclic aromatic hydrocarbons (PAHs) content in the biochar and noncondensable gas (noncondensables) composition was investigated. The impact of the torrefaction time (30–75 min) on the composition of the condensable volatiles (condensables) and their toxicity were also studied. The torrefaction process was performed in a batch-scale reactor. The PAH contents were measured using high-performance liquid chromatography (HPLC), and the noncondensables composition was measured online using a gas analyzer and then gas chromatograph with flame ionization detector (GC-FID). The condensables composition and main compound quantification were determined and quantified using gas chromatography–mass spectrometry (GC/MS). Three toxicity tests, for saltwater bacteria (Microtox® bioassay), freshwater crustaceans (Daphtoxkit F magna®), and vascular plants (Lemna sp. growth inhibition test), were performed for the condensables. The PAHs content in the biochar, regardless of the torrefaction temperature, allows them to be used in agriculture. The produced torgas shall be co-combusted with full-caloric fuel because of its low calorific value. Toxic compounds (furans and phenols) were identified in the condensable samples, and regardless of the processing time, the condensables were classified as highly toxic. Therefore, they can be used either as pesticides or as an anaerobic digestion substrate after their detoxification.


2016 ◽  
Vol 94 (4) ◽  
pp. 259-264
Author(s):  
Fadi L. Alkhateeb ◽  
Taylor C. Hayward ◽  
Kevin B. Thurbide

A novel method for ultrashort capillary column gas chromatography (GC) analysis is introduced, which employs on-column injection and detection and rapid temperature programming. Using 10–20 cm long capillary columns, results showed that the method provides efficient and very rapid separations for relatively simple mixtures. Moreover, the on-column aspect of the method used here is demonstrated to avoid the extra column analyte degradation that can occur in traditional approaches to such separations. As a result, the developed method allows for the first time the GC analysis of some very large and (or) highly thermally labile analytes, such as polypeptides and drug molecules that are normally prone to decomposition. As an application, this method is further used to monitor pharmaceutical degradant formation as a function of temperature and was found to provide similar results to those obtained from conventional high-performance liquid chromatography analysis. Overall, the findings indicate that this ultrashort GC column approach could be useful in these areas and potentially others, where relatively simple GC analysis and universal flame ionization detection is desirable.


Sign in / Sign up

Export Citation Format

Share Document