Variable regeneration behaviour of Ulmus davidiana var. Japonica in response to disturbance regime for risk spreading

1997 ◽  
Vol 7 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Kenji Seiwa

AbstractRecruitment-related traits (development and dispersal of seeds, emergence, leaf dynamics, growth and survival of seedlings) were studied in Japanese elm (Ulmus davidiana var. japonica) in relation to disturbance at the soil level (bare soil, litter and control) or the canopy level (forest edge (FE), small gaps (SG) and forest understorey (FU)), or both, in a riverside forest from 1990 to 1993. Seed germination was also tested in the laboratory. Litter accumulation severely inhibited seedling emergence. Seedling emergence from a single seed rain occurred in summer immediately after seed dissemination and in the following spring. In summer, seedling emergence was higher in FE than in FU. In the following spring more seedlings emerged in FU than in FE and SG, resulting in non-significant differences in the percentage emergence among the three sites in bare soil. Darkness or far-red light induced seed dormancy, but after chilling they started to germinate again under white or red light conditions. These results explained emergence phenology under changing light conditions in the field. In FU, the spring emerging cohort grew and survived better than the summer emerging one. In FE the reverse was true. Japanese elm avoids unfavourable periods by escaping either in time (dormancy) or in space (dispersal). Such traits compensate for late and compressed seed dissemination, and improve seedling growth and survival not only when disturbance occurs at both canopy and soil level (bare soil in FE) but also only at soil level (bare soil in FU), which may occur more frequently in riverside forests.

1995 ◽  
Vol 43 (3) ◽  
pp. 227-237 ◽  
Author(s):  
Costas A. Thanos ◽  
Maria A. Doussi

Ecophysiological aspects of seed germination were investigated in four aromatic labiate plants of Crete Origanum dictamnus (dittany), Sideritis syriaca L. ssp. syriaca (Cretan mountain tea), Salvia pomifera L. ssp. pomifera (gall-bearing sage), and Salvia fruticosa (three-lobed sage). Experiments were performed both at constant temperatures and darkness as well as under temperature and light conditions simulating those prevailing in nature during the main germination periods (i.e., start and middle of the rainy season, November and February-March, respectively). In three out of the four species, no particular dormancy was revealed and germination occurred rather promptly, although in a rather narrow range of cool temperatures and at a relatively slow rate; both characteristics determine and/or support an early, autumn seed germination and seedling establishment. In the fourth plant, Sideritis syriaca, germination was manifested at relatively warm temperatures and at a considerably faster rate, in accordance with its alpine distribution favoring spring seedling emergence and establishment. All four species tested showed an intermediate response towards light, as a result of their intermediate levels of active phytochrome maintained in darkness. Therefore seed germination was partially manifested in darkness but it was significantly enhanced (particularly at suboptimal temperatures) by white or red light; on the other hand, illumination with far-red light (simulating light conditions under a canopy) resulted in significant inhibition compared to dark controls.


2016 ◽  
Vol 6 (1) ◽  
pp. 905-913
Author(s):  
Bahram Majd Nassiry ◽  
Neda Mohammadi

    One of the effects of reducing water content on soil is reduction of growth and development of seedlings and variation of field development. Seed priming technique has been known as a challenge to improve germination and seedling emergence under different environmental stresses. The objectives of this research were to evaluate the effects of osmo-priming on germination characteristics and changes of proline, protein and catalase activity of Ocimum basilicum seeds. Results showed that drought stress reduced the germination characteristics and drought stress in -8 bar was the critical stress.  Priming treatments were include KNO3, PEG and NaCl by 0, -4 and -8 bar concentrations. The seeds were primed with those materials for 8 and 16 hours. The highest germination characteristics were obtained from nitrate potassium in -8 bar for 16 hours priming. Therefore the best seed treatment under drought stress during germination was obtained from the osmo-primed with -8 bar nitrate potassium for 16 hours. The drought stress increased proline and catalase activity but reduced total protein. Priming treatment increases proline, total protein and catalase activity under drought and control conditions. It is concluded that priming results in improvement in germination components of Ocimum basilicum in drought stress conditions and increases the resistance to drought stress with improvement of proline, protein and catalase activity in germination phase.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ranju Ravindran Santhakumari Manoj ◽  
Maria Stefania Latrofa ◽  
Sara Epis ◽  
Domenico Otranto

Abstract Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract


2002 ◽  
Vol 50 (2) ◽  
pp. 197 ◽  
Author(s):  
Timothy J. Wills ◽  
Jennifer Read

Various fire-related agents, including heat, smoke, ash and charred wood, have been shown to break dormancy and promote germination of soil-stored seed in a broad range of species in mediterranean-type systems. However, relatively little work has been conducted in south-eastern Australian heathlands. This study examined the effects of heat and smoked water on germination of the soil seed bank in a mature sand heathland within the Gippsland Lakes Coastal Park, in south-eastern Australia. Heat was clearly the most successful treatment for promoting seed germination, followed by smoked water, then controls, with 55% of species present in the germinable soil seed bank requiring a heat or smoke stimulus to promote seed germination. Mean species richness of the germinable soil seed bank was found to be significantly higher in heat-treated soil than in smoke and control treatments. Seedling density of heat-treated soil was almost 10 times that of controls, while smoke-treated soil was almost five times that of controls. Seedling emergence was fastest in heat-treated soil, followed by smoke and control soils. Of the species found in the soil seed bank, 25% were absent from the extant vegetation, suggesting the existence of post-fire colonisers in the soil seed bank. The results have implications for the design of soil seed bank experiments and the use of fire as a tool in vegetation management.


REINWARDTIA ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 237
Author(s):  
Dian Latifah ◽  
Robert A. Congdon ◽  
Joseph A. Holtum

Palms (Arecaceae) are an important component of many tropical rainforests. Many have also been cultivated widely for agricultural commodities with high economic value. They are also important components in rehabilitation of disturbed or marginal lands. Knowledge and application of germination strategies are essential in the cultivation of palms. Many species have seeds that do not germinate readily, even when light conditions are favourable. This research determined the effects of seed coats, light and temperature on germination of Arenga australasica (H. Wendl. & Drude) S. T. Blake ex H. E. Moore, Calamus australis Mart., Hydriastele wendlandiana (F. Muell.) H. Wendl. & Drude and Licuala ramsayi var. tuckeri Barford & Dowe. We examined physical treatments to promote germination or break dormancy, as well as different light and temperature conditions. The results showed that the hard seed coats of the four species slowed imbibition. Scarified seeds germinated best for A. australasica, C. australis and L. ramsayi. The germination of all seeds was inhibited by far red light. The red light requirement suggests that these species prefer to colonise open areas. This implies that dispersal agents, canopy gaps and forest margins may play important roles in promoting regeneration as well as conservation of these palm species.


1988 ◽  
Vol 45 (8) ◽  
pp. 1490-1494 ◽  
Author(s):  
Eric A. Parkinson ◽  
Kanji Tsumura

Coho (Oncorhynchus kisutch) and kokanee salmon (O. nerka) were sterilized using 17α-methyltestosterone treatments and released into a lacustrine environment. The treatment appeared to be successful and sizes at capture were similar for treated and control fish. Return rates of hormone-treated groups of fish were much lower than those of the control groups. Differences in return rates were assumed to be due to differences in survival rates but the possibility of differential vulnerability to the capture gear could not be ruled out. The proportion of treated kokanee in the catch increased with age, indicating that treated kokanee survived beyond the normal life span of the species.


2020 ◽  
Vol 61 (5) ◽  
pp. 933-941
Author(s):  
Xiaoying Liu ◽  
Chunmei Xue ◽  
Le Kong ◽  
Ruining Li ◽  
Zhigang Xu ◽  
...  

Abstract We report here the interactive effects of three light qualities (white, red and blue) and three growth temperatures (16�C, 22�C and 28�C) on rosette growth, hypocotyl elongation and disease resistance in Arabidopsis thaliana. While an increase in temperature promotes hypocotyl elongation irrespective of light quality, the effects of temperature on rosette growth and disease resistance are dependent on light quality. Maximum rosette growth rate under white, red and blue light are observed at 28�C, 16�C and 22�C, respectively. The highest disease resistance is observed at 16�C under all three light conditions, but the highest susceptibility is observed at 28�C for white light and 22�C for red and blue light. Interestingly, rosette growth is inhibited by phytochrome B (PHYB) under blue light at 28�C and by cryptochromes (CRYs) under red light at 16�C. In addition, disease resistance is inhibited by PHYB under blue light and promoted by CRYs under red light. Therefore, this study reveals a complex interaction between light and temperature in modulating rosette growth and disease resistance as well as the contribution of PHYB and CRY to disease resistance.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1708
Author(s):  
Sara Serra ◽  
Stefano Borghi ◽  
Giverson Mupambi ◽  
Hector Camargo-Alvarez ◽  
Desmond Layne ◽  
...  

High temperatures, wind, and excessive sunlight can negatively impact yield and fruit quality in semi-arid apple production regions. Netting was originally designed for hail protection, but it can modify the light spectrum and affect fruit quality. Here, pearl, blue, and red photoselective netting (≈20% shading factor) was installed in 2015 over a commercial “Cameron Select® Honeycrisp” orchard. Our research objectives were to (1) describe the light quantity and quality under the colored nets compared to an uncovered control and (2) investigate the effect of Photoselective nets on “Honeycrisp” apple quality for two growing seasons. Light transmittance and scattering for each treatment were measured with a spectroradiometer, and samples for fruit quality analyses were collected at harvest. PAR (photosynthetic active radiation), UV, blue, red, and far-red light were lower underneath all netting treatments compared to an uncovered control. The scattered light was higher under the pearl net compared to other colors, while red and far-red light were lower under the blue net. For two consecutive years, trees grown under the photoselective nets intercepted more incoming light than the uncovered trees with no differences among the three colors. In both years, trees under red and blue nets had more sunburn-free (clean) apples than pearl and control. Red color development for fruit was lower when nets were used. Interestingly, bitter pit incidence was lower underneath red nets for both years. Other than red color development, “Honeycrisp” fruit quality was not appreciably affected by the use of netting. These results highlight the beneficial effect of nets in improving light quality in orchards and mitigating physiological disorders such as bitter pit in “Honeycrisp” apple.


Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 170 ◽  
Author(s):  
Alla Silkina ◽  
Bethan Kultschar ◽  
Carole A. Llewellyn

Improving mass cultivation of cyanobacteria is a goal for industrial biotechnology. In this study, the mass cultivation of the thermophilic cyanobacterium Chlorogloeopsis fritschii was assessed for biomass production under light-emitting diode white light (LEDWL), far-red light (FRL), and combined white light and far-red light (WLFRL) adaptation. The induction of chl f was confirmed at 24 h after the transfer of culture from LEDWL to FRL. Using combined light (WLFRL), chl f, a, and d, maintained the same level of concentration in comparison to FRL conditions. However, phycocyanin and xanthophylls (echinone, caloxanthin, myxoxanthin, nostoxanthin) concentration increased 2.7–4.7 times compared to LEDWL conditions. The productivity of culture was double under WLFRL compared with LEDWL conditions. No significant changes in lipid, protein, and carbohydrate concentrations were found in the two different light conditions. The results are important for informing on optimum biomass cultivation of this species for biomass production and bioactive product development.


2019 ◽  
Vol 33 (03) ◽  
pp. 464-474
Author(s):  
Tessa de Boer ◽  
Peter Smith ◽  
Kevin Chandler ◽  
Robert Nurse ◽  
Kristen Obeid ◽  
...  

AbstractThe development of a linuron-free weed management strategy for carrot production is essential as a result of the herbicide reevaluation programs launched by the Pest Management Regulatory Agency in Canada for herbicides registered before 1995 and the discovery of linuron-resistant pigweed species in Ontario. Field trials were conducted in one of Ontario’s main carrot-growing regions on high organic soils in 2016 and 2017. Pigweed species seedlings were effectively controlled with PRE treatments of prometryn, pendimethalin, S-metolachlor, or glufosinate. POST treatments of pyroxasulfone and metribuzin followed by predetermined biologically effective dose (≥90% control of pigweed seedlings) of acifluorfen, oxyfluorfen, fluthiacet-methyl, and fomesafen achieved excellent crop selectivity and commercially acceptable pigweed species seedling control under field conditions. Carfentrazone-ethyl or fomesafen applied PRE severely reduced seedling emergence and yield in the wet growing season of 2017. This study demonstrated clearly that an alternative linuron-free strategy can be developed for carrots. The strategy of exploring the potential to use the biologically effective dose of selected herbicides to achieve crop selectivity and control of pigweed species seedlings was verified.


Sign in / Sign up

Export Citation Format

Share Document