The irritable occupant: recent developments in thermal comfort theory

1996 ◽  
Vol 2 (2) ◽  
pp. 84-90 ◽  
Author(s):  
Nick Baker

This paper explores thermal comfort, following recent renewed interest in thermal comfort standards. It also reports on findings from the Thermal Comfort Task in the EU funded PASCOOL project which had an overall objective of promoting passive cooling and avoiding air conditioning. Finally, some tentative conclusions are developed together with their implications for architectural design.

Author(s):  
Jean Paul Harrouz ◽  
Kamel Ghali ◽  
Nesreen Ghaddar

Abstract Office spaces are characterized by strict constraints of thermal comfort and indoor air quality (IAQ) levels crucial for the occupants’ wellbeing and decision-making abilities. For these reasons, office spaces have large cooling loads especially in hot climates. Conventional vapor compression air conditioning systems are known to be energy intensive systems that rely mainly on electrical energy. Thus, there is a pressing need to decrease the reliance on active cooling systems by the introduction of passive cooling strategies and efficient sustainable buildings. This study proposes an effective passive cooling system that integrates a cross-flow dew point indirect evaporative cooler (DP-IEC) supplying cool clean air to an office space. Validated mathematical models were used to assess the integrated system’s ability in maintaining acceptable thermal comfort and IAQ levels at minimal energy and water consumption. The simulations were carried out for the peak load month for a case study of an occupied office located in the semi-arid and hot Lebanese inland region. The proposed system was able to meet the space thermal and IAQ constraints (average indoor temperature of 25.6 °C, CO2 concentration below 600 ppm). The optimized system operation yielded a daily energy and water consumption of 0.65 kWh and 52 L with a reduction of 80 % in the running cost as compared to the conventional mechanical system.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2597-2604
Author(s):  
Razika Kharchi ◽  
Khaled Imessad

A significant portion of energy consumed in buildings is due to energy usage by heating, ventilation, and air conditioning systems. Free cooling is a good option for energy savings in the systems. In recent years, scientists, engineers, and architects designed successful and innovative buildings which use passive cooling techniques, such as natural ventilation. The house studied in the present work, is a pilot project undertaken jointly by the Centre for Development of Renewable Energies (CDER) and the National Centre for Studies and Research of the integrated building (CNERIB) in the framework of the MED-ENEC project (Mediterranean Energy Efficiency in Construction structure). The house under consideration has a surface area of 65 m2 and is located in the region of Algiers which characterized by a Mediterranean climate with relatively mild winters and a hot and humid summer. The aim of this work is to study the thermal comfort inside the house in summer without air conditioning systems, only ventilation is considered. The aim of this work is to study the effect of natural ventilation on both thermal and hygrometric comfort inside the house during the summer period. Numerical simulation is made using the TRNSYS software and the results obtained are in good agreement with measured values. The prototype home is designed in a way that natural ventilation allows thermal comfort which induced energy saving from air conditioning. The mean temperature measured in the interior of the house is 26?C. The relative humidity reaches about 70% in August. Thermal comfort is related to relative humidity that are the essential parameters of the feeling of comfort. Humidity is an important parameter in thermal comfort, it is why we can conclude that we have reached a relatively good hygrothermal comfort.


Sweet Spots ◽  
2018 ◽  
pp. 69-84
Author(s):  
John P. Klingman

This is a descriptive analysis of a historic New Orleans Garden District house by its owner, an architect who has embraced the idiosyncratic aspects of the house while designing ways of enhancing them. The chapter’s vantage point is lived and imagined experience, in the manner of Gaston Bachelard, focused upon the concept of dwelling. Perhaps most radically, the chapter describes the potential for and advantages of thermal comfort in warm weather, using passive cooling and other design modifications, while eschewing mechanical air conditioning.


Arsitektura ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 155
Author(s):  
Juliana Bekti Susilaning Budi ◽  
Khairunnisa Fifthariski ◽  
Sri Yuliani ◽  
Wiwik Setyaningsih

<p class="Abstract"><em>The natural air conditioning in the medical school building hall of the Faculty of Medicine, Universitas Sebelas Maret needs to be optimized in order to achieve maximum thermal comfort. Optimal natural stability with the support of green space within a building can increase the level of comfort that supports user activity. The purpose of the research is to optimize the natural system applied in the building that is on the void located in the middle of the building by providing green space placed on the hall of the building so as to provide maximum thermal comfort on the user building according to principles in architectural design . This research used qualitative method based on literartur study, field observation and interview result with user of doctor building of Faculty of Medicine, Sebelas Maret University. The expected result from the provision of green space in the hall space of the building is the optimal natural innate in the building so that the building users feel comfortable in the move.</em></p>


2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


Author(s):  
Emilios Avgouleas

This chapter offers a critical overview of the issues that the European Union 27 (EU-27) will face in the context of making proper use of financial innovation to further market integration and risk sharing in the internal financial market, both key objectives of the drive to build a Capital Markets Union. Among these is the paradigm shift signalled by a technological revolution in the realm of finance and payments, which combines advanced data analytics and cloud computing (so-called FinTech). The chapter begins with a critical analysis of financial innovation and FinTech. It then traces the EU market integration efforts and explains the restrictive path of recent developments. It considers FinTech's potential to aid EU market integration and debates the merits of regulation dealing with financial innovation in the context of building a capital markets union in EU-27.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3061 ◽  
Author(s):  
Shazia Noor ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Zahid Mahmood Khan

This study provides comprehensive details of evaporative cooling options for building air-conditioning (AC) in Multan (Pakistan). Standalone evaporative cooling and standalone vapor compression AC (VCAC) systems are commonly used in Pakistan. Therefore, seven AC system configurations comprising of direct evaporative cooling (DEC), indirect evaporative cooling (IEC), VCAC, and their possible combinations, are explored for the climatic conditions of Multan. The study aims to explore the optimum AC system configuration for the building AC from the viewpoints of cooling capacity, system performance, energy consumption, and CO2 emissions. A simulation model was designed in DesignBuilder and simulated using EnergyPlus in order to optimize the applicability of the proposed systems. The standalone VCAC and hybrid IEC-VCAC & IEC-DEC-VCAC system configurations could achieve the desired human thermal comfort. The standalone DEC resulted in a maximum COP of 4.5, whereas, it was 2.1 in case of the hybrid IEC-DEC-VCAC system. The hybrid IEC-DEC-VCAC system achieved maximum temperature gradient (21 °C) and relatively less CO2 emissions as compared to standalone VCAC. In addition, it provided maximum cooling capacity (184 kW for work input of 100 kW), which is 85% higher than the standalone DEC system. Furthermore, it achieved neutral to slightly cool human thermal comfort i.e., 0 to −1 predicted mean vote and 30% of predicted percentage dissatisfied. Thus, the study concludes the hybrid IEC-DEC-VCAC as an optimum configuration for building AC in Multan.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 408
Author(s):  
Elicia L. S. Wong ◽  
Khuong Q. Vuong ◽  
Edith Chow

Nanozymes are advanced nanomaterials which mimic natural enzymes by exhibiting enzyme-like properties. As nanozymes offer better structural stability over their respective natural enzymes, they are ideal candidates for real-time and/or remote environmental pollutant monitoring and remediation. In this review, we classify nanozymes into four types depending on their enzyme-mimicking behaviour (active metal centre mimic, functional mimic, nanocomposite or 3D structural mimic) and offer mechanistic insights into the nature of their catalytic activity. Following this, we discuss the current environmental translation of nanozymes into a powerful sensing or remediation tool through inventive nano-architectural design of nanozymes and their transduction methodologies. Here, we focus on recent developments in nanozymes for the detection of heavy metal ions, pesticides and other organic pollutants, emphasising optical methods and a few electrochemical techniques. Strategies to remediate persistent organic pollutants such as pesticides, phenols, antibiotics and textile dyes are included. We conclude with a discussion on the practical deployment of these nanozymes in terms of their effectiveness, reusability, real-time in-field application, commercial production and regulatory considerations.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 232
Author(s):  
Juan Manuel Medina ◽  
Carolina M. Rodriguez ◽  
Maria Camila Coronado ◽  
Lina Maria Garcia

The analysis of thermal comfort in buildings, energy consumption, and occupant satisfaction is crucial to influencing the architectural design methodologies of the future. However, research in these fields in developing countries is sectorised. Most times, the standards to study and assess thermal comfort such as ASHRAE Standard 55, EN 15251, and ISO 7730 are insufficient and not appropriate for the geographical areas of application. This article presents a scoping review of published work in Colombia, as a representative case study, to highlight the state-of-the-art, research trends, gaps, and potential areas for further development. It examines the amount, origin, extent, and content of research and peer-reviewed documentation over the last decades. The findings allow new insights regarding the preferred models and the evaluation tools that have been used to date and that are recommended to use in the future. It also includes additional information regarding the most and least studied regions, cities, and climates in the country. This work could be of interest for the academic community and policymakers in the areas related to indoor and urban climate management and energy efficiency.


2017 ◽  
Vol 18 (3) ◽  
Author(s):  
David Bender ◽  
Joseph Jones ◽  
Mark Young ◽  
Hendrike Wulfert-Markert

Sign in / Sign up

Export Citation Format

Share Document