scholarly journals From climate models to planetary habitability: temperature constraints for complex life

2016 ◽  
Vol 16 (3) ◽  
pp. 244-265 ◽  
Author(s):  
Laura Silva ◽  
Giovanni Vladilo ◽  
Patricia M. Schulte ◽  
Giuseppe Murante ◽  
Antonello Provenzale

AbstractIn an effort to derive temperature-based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly affected by the ambient temperature. Multicellular poikilotherms are the most common and evolutionarily ancient form of complex life on earth. The thermal limits for the active metabolism and reproduction of multicellular poikilotherms on earth are approximately bracketed by the temperature interval 0°C ≤ T ≤ 50°C. The same interval applies to the photosynthetic production of oxygen, an essential ingredient of complex life, and for the generation of atmospheric biosignatures observable in exoplanets. Analysis of the main mechanisms responsible for the thermal thresholds of terrestrial life suggests that the same mechanisms would apply to other forms of chemical life. We therefore propose a habitability index for complex life, h050, representing the mean orbital fraction of planetary surface that satisfies the temperature limits 0°C ≤ T ≤ 50°C. With the aid of a climate model tailored for the calculation of the surface temperature of Earth-like planets, we calculated h050 as a function of planet insolation, S, and atmospheric columnar mass, Natm, for a few earth-like atmospheric compositions with trace levels of CO2. By displaying h050 as a function of S and Natm, we built up an atmospheric mass habitable zone (AMHZ) for complex life. At variance with the classic habitable zone, the inner edge of the complex life habitable zone is not affected by the uncertainties inherent to the calculation of the runaway greenhouse limit. The complex life habitable zone is significantly narrower than the habitable zone of dry planets. Our calculations illustrate how changes in ambient conditions dependent on S and Natm, such as temperature excursions and surface dose of secondary particles of cosmic rays, may influence the type of life potentially present at different epochs of planetary evolution inside the AMHZ.

2013 ◽  
Vol 8 (S299) ◽  
pp. 378-379
Author(s):  
Jack T. O'Malley-James ◽  
Jane S. Greaves ◽  
John A. Raven ◽  
Charles S. Cockell

AbstractThe biosignatures of life on Earth are not fixed, but change with time as environmental conditions change and life living within those environments adapts to the new conditions. A latitude-based climate model, incorporating orbital parameter variations, was used to simulate conditions on the far-future Earth as the Sun enters the late main sequence. Over time, conditions increasingly favour a unicellular microbial biosphere, which can persist for a maximum of 2.8 Gyr from present. The biosignature changes associated with the likely biosphere changes are evaluated using a biosphere-atmosphere gas exchange model and their detectability is discussed. As future Earth-like exoplanet discoveries could be habitable planets nearing the end of their habitable lifetimes, this helps inform the search for the signatures of life beyond Earth


Science ◽  
2015 ◽  
Vol 347 (6222) ◽  
pp. 632-635 ◽  
Author(s):  
Jérémy Leconte ◽  
Hanbo Wu ◽  
Kristen Menou ◽  
Norman Murray

Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets’ rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere.


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Seshagiri Rao Kolusu ◽  
Christian Siderius ◽  
Martin C. Todd ◽  
Ajay Bhave ◽  
Declan Conway ◽  
...  

AbstractUncertainty in long-term projections of future climate can be substantial and presents a major challenge to climate change adaptation planning. This is especially so for projections of future precipitation in most tropical regions, at the spatial scale of many adaptation decisions in water-related sectors. Attempts have been made to constrain the uncertainty in climate projections, based on the recognised premise that not all of the climate models openly available perform equally well. However, there is no agreed ‘good practice’ on how to weight climate models. Nor is it clear to what extent model weighting can constrain uncertainty in decision-relevant climate quantities. We address this challenge, for climate projection information relevant to ‘high stakes’ investment decisions across the ‘water-energy-food’ sectors, using two case-study river basins in Tanzania and Malawi. We compare future climate risk profiles of simple decision-relevant indicators for water-related sectors, derived using hydrological and water resources models, which are driven by an ensemble of future climate model projections. In generating these ensembles, we implement a range of climate model weighting approaches, based on context-relevant climate model performance metrics and assessment. Our case-specific results show the various model weighting approaches have limited systematic effect on the spread of risk profiles. Sensitivity to climate model weighting is lower than overall uncertainty and is considerably less than the uncertainty resulting from bias correction methodologies. However, some of the more subtle effects on sectoral risk profiles from the more ‘aggressive’ model weighting approaches could be important to investment decisions depending on the decision context. For application, model weighting is justified in principle, but a credible approach should be very carefully designed and rooted in robust understanding of relevant physical processes to formulate appropriate metrics.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Owen R. Lehmer ◽  
David C. Catling ◽  
Joshua Krissansen-Totton

AbstractIn the conventional habitable zone (HZ) concept, a CO2-H2O greenhouse maintains surface liquid water. Through the water-mediated carbonate-silicate weathering cycle, atmospheric CO2 partial pressure (pCO2) responds to changes in surface temperature, stabilizing the climate over geologic timescales. We show that this weathering feedback ought to produce a log-linear relationship between pCO2 and incident flux on Earth-like planets in the HZ. However, this trend has scatter because geophysical and physicochemical parameters can vary, such as land area for weathering and CO2 outgassing fluxes. Using a coupled climate and carbonate-silicate weathering model, we quantify the likely scatter in pCO2 with orbital distance throughout the HZ. From this dispersion, we predict a two-dimensional relationship between incident flux and pCO2 in the HZ and show that it could be detected from at least 83 (2σ) Earth-like exoplanet observations. If fewer Earth-like exoplanets are observed, testing the HZ hypothesis from this relationship could be difficult.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Günther Heinemann ◽  
Sascha Willmes ◽  
Lukas Schefczyk ◽  
Alexander Makshtas ◽  
Vasilii Kustov ◽  
...  

The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.


2012 ◽  
Vol 5 (3) ◽  
pp. 2811-2842 ◽  
Author(s):  
M. A. Chandler ◽  
L. E. Sohl ◽  
J. A. Jonas ◽  
H. J. Dowsett

Abstract. Climate reconstructions of the mid-Pliocene Warm Period (mPWP) bear many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change. In particular, marine and terrestrial paleoclimate data point to high latitude temperature amplification, with associated decreases in sea ice and land ice and altered vegetation distributions that show expansion of warmer climate biomes into higher latitudes. NASA GISS climate models have been used to study the Pliocene climate since the USGS PRISM project first identified that the mid-Pliocene North Atlantic sea surface temperatures were anomalously warm. Here we present the most recent simulations of the Pliocene using the AR5/CMIP5 version of the GISS Earth System Model known as ModelE2-R. These simulations constitute the NASA contribution to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. We provide discussion of features that show considerable improvement compared with simulations from previous versions of the NASA GISS models, improvement defined here as simulation results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene climate. In some regions even qualitative agreement between model results and paleodata are an improvement over past studies, but the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea in these new simulations is by far the most accurate portrayal ever of this key geographic region by the GISS climate model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterizations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate.


2003 ◽  
Vol 2 (1) ◽  
pp. 35-39 ◽  
Author(s):  
S. Franck ◽  
M. Cuntz ◽  
W. von Bloh ◽  
C. Bounama

In a previous paper, we showed that Earth-type habitable planets around 47 UMa are in principle possible if a distinct set of conditions is warranted. These conditions include that the Earth-type planets have successfully formed and are orbitally stable and, in addition, that the 47 UMa star–planet system is relatively young ([lsim ]6 Gyr). We now extend this study by considering Earth-like planets with different land/ocean coverages. This study is again based on the so-called integrated system approach, which describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical and geodynamical processes. This approach implies a special characterization of the habitable zone defined for a distinct type of planet. We show that the likelihood of finding a habitable Earth-like planet on a stable orbit around 47 UMa critically depends on the percentage of the planetary land/ocean coverage. The likelihood is significantly increased for planets with a very high percentage of ocean surface (‘water worlds’).


2007 ◽  
Vol 88 (3) ◽  
pp. 375-384 ◽  
Author(s):  
E. S. Takle ◽  
J. Roads ◽  
B. Rockel ◽  
W. J. Gutowski ◽  
R. W. Arritt ◽  
...  

A new approach, called transferability intercomparisons, is described for advancing both understanding and modeling of the global water cycle and energy budget. Under this approach, individual regional climate models perform simulations with all modeling parameters and parameterizations held constant over a specific period on several prescribed domains representing different climatic regions. The transferability framework goes beyond previous regional climate model intercomparisons to provide a global method for testing and improving model parameterizations by constraining the simulations within analyzed boundaries for several domains. Transferability intercomparisons expose the limits of our current regional modeling capacity by examining model accuracy on a wide range of climate conditions and realizations. Intercomparison of these individual model experiments provides a means for evaluating strengths and weaknesses of models outside their “home domains” (domain of development and testing). Reference sites that are conducting coordinated measurements under the continental-scale experiments under the Global Energy and Water Cycle Experiment (GEWEX) Hydrometeorology Panel provide data for evaluation of model abilities to simulate specific features of the water and energy cycles. A systematic intercomparison across models and domains more clearly exposes collective biases in the modeling process. By isolating particular regions and processes, regional model transferability intercomparisons can more effectively explore the spatial and temporal heterogeneity of predictability. A general improvement of model ability to simulate diverse climates will provide more confidence that models used for future climate scenarios might be able to simulate conditions on a particular domain that are beyond the range of previously observed climates.


2017 ◽  
Vol 30 (20) ◽  
pp. 8275-8298 ◽  
Author(s):  
Melissa S. Bukovsky ◽  
Rachel R. McCrary ◽  
Anji Seth ◽  
Linda O. Mearns

Abstract Global and regional climate model ensembles project that the annual cycle of rainfall over the southern Great Plains (SGP) will amplify by midcentury. Models indicate that warm-season precipitation will increase during the early spring wet season but shift north earlier in the season, intensifying late summer drying. Regional climate models (RCMs) project larger precipitation changes than their global climate model (GCM) counterparts. This is particularly true during the dry season. The credibility of the RCM projections is established by exploring the larger-scale dynamical and local land–atmosphere feedback processes that drive future changes in the simulations, that is, the responsible mechanisms or processes. In this case, it is found that out of 12 RCM simulations produced for the North American Regional Climate Change Assessment Program (NARCCAP), the majority are mechanistically credible and consistent in the mean changes they are producing in the SGP. Both larger-scale dynamical processes and local land–atmosphere feedbacks drive an earlier end to the spring wet period and deepening of the summer dry season in the SGP. The midlatitude upper-level jet shifts northward, the monsoon anticyclone expands, and the Great Plains low-level jet increases in strength, all supporting a poleward shift in precipitation in the future. This dynamically forced shift causes land–atmosphere coupling to strengthen earlier in the summer, which in turn leads to earlier evaporation of soil moisture in the summer, resulting in extreme drying later in the summer.


Sign in / Sign up

Export Citation Format

Share Document