scholarly journals Confocal Imaging: In Vivo and Clinical Applications

1999 ◽  
Vol 7 (2) ◽  
pp. 8-11
Author(s):  
R.W. Beuerman ◽  
S.C. Kaufman ◽  
K.A. Palkama

Confocal microscopy is a collection of optical techniques that are applied in a variety of hardware configurations. Design strategies for the application of these techniques have generally used laser light (Pawley, 1990). In most laboratories, basic research use has employed laser light in conjunction with a fluorescent substrate to generate an optical signal, either through direct application of a fluorescent material to cells or by the stimulation of a chromophore associated with an antibody which will identify a cellular protein under some specified experimental conditions, The use of confocal microscopy in this type of situation generally requires a standard research microscope, and the tissue may be situated on a slide or other type of container that will provide a stable, controlled environment.

2000 ◽  
Vol 276 (15) ◽  
pp. 11552-11558 ◽  
Author(s):  
Janet Fawcett ◽  
Frederick G. Hamel ◽  
Robert G. Bennett ◽  
Zoltan Vajo ◽  
William C. Duckworth

In adult animals, the major effect of insulin on protein turnover is inhibition of protein degradation. Cellular protein degradation is under the control of multiple systems, including lysosomes, proteasomes, calpains, and giant protease. Insulin has been shown to alter proteasome activityin vitroandin vivo. We examined the inhibition of protein degradation by insulin and insulin analogues (LysB28,ProB29-insulin (LysPro), AspB10-insulin (B10), and GluB4,GlnB16,PheB17-insulin (EQF)) in H4, HepG2, and L6 cells. These effects were compared with receptor binding. Protein degradation was examined by release of trichloroacetic acid-soluble radioactivity from cells previously labeled with [3H]leucine. Short- and intermediate-lived proteins were examined. H4 cells bound insulin with an EC50of 4.6 × 10−9m. LysPro was similar. The affinity of B10 was increased 2-fold; that of EQF decreased 15-fold. Protein degradation inhibition in H4 cells was highly sensitive to insulin (EC50= 4.2 × 10−11and 1.6 × 10−10m, short- and intermediate-lived protein degradation, respectively) and analogues. Despite similar binding, LysPro was 11- to 18-fold more potent than insulin at inhibiting protein degradation. Conversely, although EQF showed lower binding to H4 cells than insulin, its action was similar. The relative binding potencies of analogues in HepG2 cells were similar to those in H4 cells. Examination of protein degradation showed insulin, LysPro, and B10 were equivalent while EQF was less potent. L6 cells showed no difference in the binding of the analogues compared with insulin, but their effect on protein degradation was similar to that seen in HepG2 cells except B10 inhibited intermediate-lived protein degradation better than insulin. These studies illustrate the complexities of cellular protein degradation and the effects of insulin. The effect of insulin and analogues on protein degradation vary significantly in different cell types and with different experimental conditions. The differences seen in the action of the analogues cannot be attributed to binding differences. Post-receptor mechanisms, including intracellular processing and degradation, must be considered.


2012 ◽  
Vol 116 (4) ◽  
pp. 854-860 ◽  
Author(s):  
Jennifer Eschbacher ◽  
Nikolay L. Martirosyan ◽  
Peter Nakaji ◽  
Nader Sanai ◽  
Mark C. Preul ◽  
...  

Object Frozen-section analysis is the current standard for the intraoperative diagnosis of brain tumors. Intraoperative confocal microscopy is an emerging technology with the potential to visualize tumor histopathological features and cell morphology in real time. The authors report their findings using this new intraoperative technology in vivo with sodium fluorescein contrast during the course of 50 microsurgical tumor resections. Methods Eighty-eight regions were visualized with confocal microscopy, and corresponding biopsy samples were examined with routine neuropathological analysis. The tumors studied included meningiomas, schwannomas, gliomas of various grades, and a hemangioblastoma. The confocal microscopic features of each tumor and of various artifacts inherent to the technology were documented. A pathologist working in a blinded fashion reviewed a subset of the images in a further evaluation of the usefulness of the device as a diagnostic tool. Results Overall, intraoperative confocal imaging correlated surprisingly well with corresponding traditional histological findings, including the identification of many pathognomonic cytoarchitectural features of various brain tumors. In the blinded study, 26 (92.9%) of 28 lesions were diagnosed correctly. Conclusions Further study will be necessary for better definition of the role of intraoperative confocal microscopy as a routine adjunct for intraoperative brain tumor diagnosis.


2020 ◽  
pp. bjophthalmol-2020-316672
Author(s):  
Rebecca Guillon-Rolf ◽  
Scott Hau ◽  
Daniel F P Larkin

Background/AimsCongenital corneal anaesthesia (CCA) is an uncommon cause of corneal ulceration in young patients, with a reported poor visual prognosis. We correlated clinical findings in patients with CCA with corneal sub-basal nerve plexus (SBNP) morphology and dendritiform cell density (DCD) on confocal microscopy.MethodsA prospective, case–control study was conducted at a referral clinic. History includied presenting features in patients with CCA, clinical course and examination findings. Differences in SBNP morphology and DCD on in vivo confocal microscopy (IVCM) were compared in cases and control subjects with healthy corneas.ResultsEight patients with CCA were examined, of which three had a diagnosis of familial dysautonomia. Age at initial diagnosis of corneal disease ranged from infancy to 22 years, the most common presentation being corneal ulceration. All patients with CCA except one with optic neuropathy had corrected visual acuity 6/18 (logMAR 0.35) or better in at least one eye. Measured corneal sensation was minimal in all patients. Major abnormalities were found on confocal microscopy in all patients with CCA, whether or not inherited, including statistically significant reduction in SBNP nerve fibre density, fibre length and branch density. Increased DCD in superficial cornea was found in all patients with CCA.ConclusionGood visual acuity can be maintained in eyes with corneal anaesthesia present from birth. IVCM provides direct evidence of a morphological correlate for measured corneal anaesthesia. Increased DCD may indicate an enhanced role for innate immune cells in superficial cornea in protection of the anaesthetic ocular surface.


1981 ◽  
Vol 45 (03) ◽  
pp. 290-293 ◽  
Author(s):  
Peter H Levine ◽  
Danielle G Sladdin ◽  
Norman I Krinsky

SummaryIn the course of studying the effects on platelets of the oxidant species superoxide (O- 2), Of was generated by the interaction of xanthine oxidase plus xanthine. Surprisingly, gel-filtered platelets, when exposed to xanthine oxidase in the absence of xanthine substrate, were found to generate superoxide (O- 2), as determined by the reduction of added cytochrome c and by the inhibition of this reduction in the presence of superoxide dismutase.In addition to generating Of, the xanthine oxidase-treated platelets display both aggregation and evidence of the release reaction. This xanthine oxidase induced aggreagtion is not inhibited by the addition of either superoxide dismutase or cytochrome c, suggesting that it is due to either a further metabolite of O- 2, or that O- 2 itself exerts no important direct effect on platelet function under these experimental conditions. The ability of Of to modulate platelet reactions in vivo or in vitro remains in doubt, and xanthine oxidase is an unsuitable source of O- 2 in platelet studies because of its own effects on platelets.


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


1970 ◽  
Vol 24 (1) ◽  
pp. 38-41
Author(s):  
Taslima Taher Lina ◽  
Mohammad Ilias

The in vivo production of soluble inorganic pyrophosphatases (PPases) was investigated in two strains, namely, Vibrio cholerae EM 004 (environmental strain) and Vibrio cholerae O1 757 (ATCC strain). V. cholerae is known to contain both family I and family II PPase coding sequences. The production of family I and family II PPases were determined by measuring the enzyme activity in cell extracts. The effects of pH, temperature, salinity of the growth medium on the production of soluble PPases were studied. In case of family I PPase, V. cholerae EM 004 gave the highest specific activity at pH 9.0, with 2% NaCl + 0.011% NaF and at 37°C. The strain V. cholerae O1 757 gave the highest specific activity at pH 9.0, with media containing 0% NaCl and at 37°C. On the other hand, under all the conditions family II PPase did not give any significant specific activity, suggesting that the family II PPase was not produced in vivo in either strains of V. cholerae under different experimental conditions. Keywords: Vibrio cholerae, Pyrophosphatases (PPases), Specific activityDOI: http://dx.doi.org/10.3329/bjm.v24i1.1235 Bangladesh J Microbiol, Volume 24, Number 1, June 2007, pp 38-41


2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Skaidre Jankovskaja ◽  
Johan Engblom ◽  
Melinda Rezeli ◽  
György Marko-Varga ◽  
Tautgirdas Ruzgas ◽  
...  

AbstractThe tryptophan to kynurenine ratio (Trp/Kyn) has been proposed as a cancer biomarker. Non-invasive topical sampling of Trp/Kyn can therefore serve as a promising concept for skin cancer diagnostics. By performing in vitro pig skin permeability studies, we conclude that non-invasive topical sampling of Trp and Kyn is feasible. We explore the influence of different experimental conditions, which are relevant for the clinical in vivo setting, such as pH variations, sampling time, and microbial degradation of Trp and Kyn. The permeabilities of Trp and Kyn are overall similar. However, the permeated Trp/Kyn ratio is generally higher than unity due to endogenous Trp, which should be taken into account to obtain a non-biased Trp/Kyn ratio accurately reflecting systemic concentrations. Additionally, prolonged sampling time is associated with bacterial Trp and Kyn degradation and should be considered in a clinical setting. Finally, the experimental results are supported by the four permeation pathways model, predicting that the hydrophilic Trp and Kyn molecules mainly permeate through lipid defects (i.e., the porous pathway). However, the hydrophobic indole ring of Trp is suggested to result in a small but noticeable relative increase of Trp diffusion via pathways across the SC lipid lamellae, while the shunt pathway is proposed to slightly favor permeation of Kyn relative to Trp.


Sign in / Sign up

Export Citation Format

Share Document