Evaluation of different pig slurry composts as fertilizer of horticultural crops: Effects on selected chemical and microbial properties

2007 ◽  
Vol 22 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Margarita Ros ◽  
Carlos García ◽  
Maria Teresa Hernandez

AbstractThe excessive use of mineral fertilizers affects soil quality, gives rise to environmental problems and consumes energy. In contrast, organic amendment may improve soil quality at the same time as providing nutrients to plant. The aim of the work was to study the effects on crop yield and soil microbial activity of the successive addition of mineral fertilizers and fresh pig slurry before each successive crop compared with one sole application of different pig slurry composts (solid fraction of a pig slurry (CSFPS) and fresh pig slurry plus wood shavings (1:1 v/v; CPS+WS) before planting the first crop. Compost-treated soils exhibited higher organic carbon content than inorganically fertilized soils, throughout the experimental period. However, N content in the former soils was lower than in the latter after the second crop. Nevertheless, yields obtained with repeated additions of fresh pig slurry or with a sole application of pig slurry composts were similar to those obtained with repeated mineral fertilization. After the horticultural crops, organically treated soils generally showed higher values of both microbial biomass and metabolic microbial activity (measured as basal respiration and dehydrogenase activity) than the soil receiving mineral fertilization. Subsequently, the organically amended soils showed higher protease, phosphatase and β-glucosidase activities than the inorganically fertilized soil and similar levels of urease activity. From this study it can be concluded that both fresh and composted pig slurry can be used as an alternative for mineral fertilizer in growing horticultural crops and maintaining soil quality.

2015 ◽  
Vol 6 (3) ◽  
pp. 255 ◽  
Author(s):  
Angélica Bautista-Cruz ◽  
Yolanda Donají Ortíz-Hernández

Enzymes are proteins that catalyze chemical reactions in living systems, transforming specific substrates into the products needed in biological cycles and for many edaphic processes. Soil enzymatic activities have been proposed as soil quality indicators, due to their relation with soil biology. Although the long-term effects of organic and mineral fertilization on physical and chemical soil properties have been previously studied, little is known about their effects on microbial community structure, microbial biomass carbon, microbial activity and enzymatic activity. Some studies report that organic and mineral fertilizers can affect, be it positively or negatively, microbial biomass size as well as soil microbial activity. This work examines the effect of fertilization on the enzymatic activity of soil hydrolases.


Author(s):  
June F. S. Menezes ◽  
Mariana P. da Silva ◽  
Jeander O. Caetano ◽  
Veridiana C. G. Cantão ◽  
Vinícius de M. Benites

ABSTRACT Organic wastes produced in large quantities in pig farms, such as liquid swine manure (LSM), can become a good alternative source of nutrients for agriculture, thus enabling total or partial replacement of mineral fertilizers in agricultural crops. The aim of this study was to evaluate the use of LSM as a substitute of mineral fertilizer in the maize crop under Cerrado soil conditions. The treatments consisted of using mineral fertilization recommended for the maize crop; without fertilization; and LSM doses (25, 50,100 and 200 m3 ha-1). Maize grain yield was evaluated in the 2004/2005, 2005/2006, 2006/2007, 2007/2008, 2009/2010, 2011/2012 and 2013/2014 crop seasons. The mineral fertilization in maize can be replaced by pig slurry doses from 100 m3 ha-1 in a Cerrado soil (dystroferric Red Latosol with clayey texture) with no loss of yield components.


2019 ◽  
Vol 70 (10) ◽  
pp. 3464-3468
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Ilona Katalin Fodor ◽  
Delia Mirela Tit ◽  
Cristian Felix Blidar ◽  
...  

In this paper we provide new data about the soil enzyme activity as a biological process, which is an indicator for impacts of factorial combinations of lime and fertilizers applications. Five plots divided into fifteen subplots were sampled for determination of the enzymatic indicators of soil quality, based on the actual and potential dehydrogenase and catalase activities. The research revealed that limed soil samples, in comparison with unlimed ones, resulted in significantly higher soil enzymatic activities (p[0.05) in the upper (0-20 cm), while in the deeper (20-40 cm) layer, only catalase activity was significantly higher (at least at p[0.02). Mineral fertilization, in comparison with its farmyard manuring, led to an insignificant increase in each of the three enzymatic activities determined, excepting catalase activity which was significantly higher (0.05]p]0.02) in the 0-20 cm layer. Based on the absolute values of the enzymatic activities, the enzymatic indicators of soil quality (EISQ) were calculated. The mineral NPK-fertilization and low dose of lime in the 0-20 cm layer, and mineral NP-fertilization and low dose of lime in the 20-40 cm layer proved to be the best variants of fertilization. The enzymatic indicators of soil quality in these variants reached the highest values: EISQ=0.821 and EISQ=0.889, respectively, indicating the presence of high enzymatic activities. It should be emphasized that a balanced application of lime, mineral fertilizers and farmyard manure leads to the formation of favorable conditions for the development of microorganisms, growth of plants and for an intense and lasting enzymatic activity.


2016 ◽  
Vol 62 (No. 8) ◽  
pp. 355-360 ◽  
Author(s):  
L. Hlisnikovský ◽  
G. Mühlbachová ◽  
E. Kunzová ◽  
M. Hejcman ◽  
M. Pechová

The 28-day incubation experiment was carried out to evaluate the impact of the application of digestate (Dig); digestate with straw (DigSt); pig slurry (Slu) and mineral fertilizer (NPK) on Cd, Cu, Mn and Zn availability, on K<sub>2</sub>SO<sub>4</sub>-extractable carbon content and on the soil pH value in long-term contaminated soil. At days three and seven of the experiment, the 0.01 mol/L CaCl<sub>2</sub>-extractable fractions of Cd, Zn and Mn significantly decreased under organic treatments (Dig, DigSt and Slu) with the most pronounced effect under Dig treatment. The NPK treatment caused the increase of risky element concentrations since day 21 of incubation which was accompanied with pH decrease. The contents of 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon were the highest at day 3 and 7 of incubation in organic treatments. The significant correlations between 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon and CaCl<sub>2</sub>-extractable metal concentrations showed a close relationship between fresh organic matter added in organic fertilizers and risky element availability, suggesting that newly added labile organic matter can form temporary ligands with risky elements and release them later following its decomposition.  


2012 ◽  
Vol 518-523 ◽  
pp. 356-360
Author(s):  
Rui Yu Jia ◽  
Xiao Guang Zhao ◽  
Yang Yang

This study has adopted potted experiment to study systematically the effect on soil microbial quantities of the accumulation of five different plastic film: for 0 year ,for 5years ,for 10 years ,for 15 years ,and for 20 years , and has analyzed the change trends of soil microbial activity. Whose relationship with soil quality has also been explored through analysis of the situation on crop growth, so as to provide scientific basis for law of the accumulation of plastic film on soil microbial activity.


2017 ◽  
Vol 63 (No. 3) ◽  
pp. 105-110 ◽  
Author(s):  
Vitale Luca ◽  
Polimeno Franca ◽  
Ottaiano Lucia ◽  
Maglione Giuseppe ◽  
Tedeschi Anna ◽  
...  

Improvements in crop management for a more sustainable agriculture are fundamental to reduce environmental impacts of cropland and to mitigate effects on global climate change. In this study three fertilization types – ammonium nitrate (control); mineral fertilizer added with a nitrification inhibitor (3,4-dimethylpyrazole phosphate (DMPP)), and an organo-mineral fertilizer (OM) – were tested on a tomato crop in order to evaluate effects both on crop production and soil N<sub>2</sub>O emissions. Plants grown under OM fertilization had a greater relative growth rate compared to mineral fertilization, due to a higher net assimilation rate, which was related to a greater light interception rather than to a higher photosynthetic efficiency. OM fertilization determined the highest fruit production and lower soil N<sub>2</sub>O fluxes compared to NH<sub>4</sub>NO<sub>3</sub>, although the lowest soil N<sub>2</sub>O fluxes were found in response to mineral fertilizer added with a nitrification inhibitor. It can be concluded that organo-mineral fertilizer is a better nutrient source compared to mineral fertilizers able to improve crop yield and to mitigate soil N<sub>2</sub>O emission.  


2017 ◽  
Vol 11 (4) ◽  
pp. 296 ◽  
Author(s):  
Wellington Da Silva Toledo ◽  
João Paulo Agápto ◽  
Gustavo Fonseca De Almeida

The feasibility of reducing non-renewable natural resources use in agriculture, associated with the need for ecologically-appropriate of organic waste disposal has become an important element in planning more sustainable agricultural systems. Consequently, the aim of the current study was to evaluate the response of the common bean, growing in an Eutrophic Latosol in the city of Buri-SP, to the application of organic and mineral fertilizers. An experiment was carried out in the 2015 agricultural year, using a randomized block design with 4 replicates and 5 treatments, these being: 1 - mineral fertilizer; 2 - organomineral fertilizer; 3 - sheep manure compost; 4 - chicken bedding compost, and control (soil without fertilizer application). The tested variables were: pod length (cm); per plant pod number; per pod seed number; mass of 100 grains (g); and grain yield (kg ha-1). Organomineral fertilizer provided the most significant increase in pod length, per plant pod number, and yield compared to the other treatments, except for sheep manure compost, where productivity did not differ. In addition, with the exception of mass per 100 seeds, there was no difference between treatments using organic fertilization and mineral fertilizer. Under the current study´s experimental conditions, organomineral fertilizer and sheep manure compost produced the highest productivity for common beans. Thus, mineral fertilization can be replaced by organic or organomineral alternatives, so helping to produce more sustainable production management and help reduce environmental impacts.


2019 ◽  
Vol 8 (3) ◽  
pp. 71
Author(s):  
Roberto Quirós ◽  
Pere Muñoz

The use of mineral fertilizer in horticultural crops is a very important issue due to its effects on crop yield and its environmental impact. For the period 2011-2012, the total mineral fertilizer consumption in EU-27 reached 10.4 million tons of nitrogen (N), 1.0 million tons of phosphorus (K) and 2.2 million tons of potassium (K). Though many recent studies have examined horticultural crops, few have focused on mineral fertilizers in order to make an environmental assessment of a tomato crop. Therefore, the aim of this research was to study the agronomical (i.e. yield) and the environmental performance of a horticultural tomato crop fertilized with four different doses of mineral fertilizer (N0, N1, N2 and N3), using Life Cycle Assessment methodology. Data and conditions for the crop were taken from a real field trial with an experimental design carried out in North-east Catalonia, Spain. Following the guidelines of the ISO 14044, the study considered all stages of the life cycle of a horticultural tomato crop (i.e. mineral fertilizer production, transport and cultivation phase). Six impact categories were included in the study: climate change, photochemical oxidation formation, land acidification, freshwater and marine eutrophication and fossil depletion. Overall, the results showed that the best result was for the N1 treatment, with a yield of 61 ton ha-1 and 55 ton ha-1 for total and commercial yield, respectively. N1 showed the best environmental performance in all categories assessed.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 485 ◽  
Author(s):  
Jakub Elbl ◽  
Jana Maková ◽  
Soňa Javoreková ◽  
Juraj Medo ◽  
Antonín Kintl ◽  
...  

The presented paper deals with the analysis of potential differences between organic waste compost (CBD), vermicompost (CVER) and mineral fertilizer (MF; 27% of N) applications affecting the quality of arable soil by influencing microbial activity therein. The selected types of compost represent alternatives to conventional organic fertilizers, which are, however, not available to Czech and Slovak farmers in sufficient amounts. Their mutual comparison and the comparison with organic fertilizers aim to provide farmers further information about their influence on arable land and thus to give them the possibility of deciding on the most suitable amendments. To demonstrate the effect of these amendments, six variants were prepared: one without the addition of fertilizers; two variants with the addition of 40 Mg/ha of CVER and CBD; one variant with the addition of double dosed CVER (80 Mg/ha), and the remaining two variants were fertilized only with MF (0.22 Mg/ha) and with the combination of CVER (0.20 Mg/ha) and MF (0.11 Mg/ha). Substrate induced respiration (SIR), basal respiration (BS), microbial carbon (Cmic) and enzymatic activities (hydrolysis of fluorescein diacetate—FDA, dehydrogenase activity—DHA, and phosphatase activity—PA) were used to evaluate the effect of CBD, CVER and MF application on the soil quality. Both organic and mineral amendments affected BS and SIR. The highest BS and SIR rates were found in variants with compost application (CVER and CBD). All variants treated with the mineral fertilizer showed the lowest level of enzyme activities; lower by about 30% in comparison with variants where CVER, CBD and the combination of MF and CVER were applied. We found insignificant differences between the individual types of compost. More importantly, we compared the situation at the beginning of the experiment and after its end. It was found that the application of mineral fertilizers automatically led to the deterioration of all enzymatic parameters, on average by more than 25%, as compared with the situation at the beginning of the experiment. However, when the mineral fertilizer dose was supplemented with organic amendments (CVER), this negative effect was eliminated or significantly reduced. Furthermore, both composts (CVER and CBD) positively affected plant biomass production, which reached a level of production enhanced by the MF. Results clearly showed that the application of both compost types could be used to improve soil quality in agriculture.


2015 ◽  
Vol 4 (4) ◽  
pp. 66 ◽  
Author(s):  
Maria I. Kokkora ◽  
Chryssoula Papaioannou ◽  
Panagiotis Vyrlas ◽  
Konstantinos Petrotos ◽  
Paschalis Gkoutsidis ◽  
...  

<p>The present study investigates the potential of olive mill wastewater, treated by microfiltration and XAD4 macroporous resin, to be used as liquid fertilizer in maize production through a 2-year field experiment. The treated olive mill wastewater (T-OMWW) was applied at two rates of 25 t and 50 t per ha per year, supplemented with mineral fertilization. There was also a treatment involving the application of only T-OMWW at the rate of 50 t per ha per year, and an only mineral fertilizer treatment. Mineral fertilizers and T-OMWW were applied progressively through a drip irrigation system.</p> Maize grain and soil analysis showed that T-OMWW was capable to meet crop requirements in N, P and K, and increase soil N, P and K availability. There was a tendency for increasing soil Na and electrical conductivity (EC) using the higher rate of T-OMWW. Therefore, for sustainable agriculture, it may be safer to apply the T-OMWW at the lower rate of 25 t per ha<sup> </sup>per year, or use the higher rate of 50 t per ha<sup> </sup>every other year.


Sign in / Sign up

Export Citation Format

Share Document