Qualitative and Quantitative Analyses of the Molecular-Level Interaction between Memantine and Model Cell Membranes

2015 ◽  
Vol 119 (30) ◽  
pp. 17074-17083 ◽  
Author(s):  
Bolin Li ◽  
Hong-Yin Wang ◽  
Peiyong Feng ◽  
Xiaofeng Han ◽  
Zhan Chen ◽  
...  
2021 ◽  
Vol 22 (11) ◽  
pp. 5939
Author(s):  
Emilia Piosik ◽  
Aleksandra Zaryczniak ◽  
Kinga Mylkie ◽  
Marta Ziegler-Borowska

Understanding the mechanism of interactions between magnetite nanoparticles and phospholipids that form cellular membranes at the molecular level is of crucial importance for their safe and effective application in medicine (e.g. magnetic resonance imaging, targeted drug delivery, and hyperthermia-based anticancer therapy). In these interactions, their surface coating plays a crucial role because even a small modification to its structure can cause significant changes to the behaviour of the magnetite nanoparticles that come in contact with a biomembrane. In this work, the influence of the magnetite nanoparticles functionalized with native and aminated starch on the thermodynamics, morphology, and dilatational elasticity of the model cell membranes was studied. The model cell membranes constituted the Langmuir monolayers formed at the air–water interface of dipalmitoylphosphatidylcholine (DPPC). The surface of the aminated starch-coated nanoparticles was enriched in highly reactive amino groups, which allowed more effective binding of drugs and biomolecules suitable for specific nano–bio applications. The studies indicated that the presence of these groups also reduced to some extent the disruptive effect of the magnetite nanoparticles on the model membranes and improved their adsorption.


Author(s):  
Jerrold L. Abraham

Inorganic particulate material of diverse types is present in the ambient and occupational environment, and exposure to such materials is a well recognized cause of some lung disease. To investigate the interaction of inhaled inorganic particulates with the lung it is necessary to obtain quantitative information on the particulate burden of lung tissue in a wide variety of situations. The vast majority of diagnostic and experimental tissue samples (biopsies and autopsies) are fixed with formaldehyde solutions, dehydrated with organic solvents and embedded in paraffin wax. Over the past 16 years, I have attempted to obtain maximal analytical use of such tissue with minimal preparative steps. Unique diagnostic and research data result from both qualitative and quantitative analyses of sections. Most of the data has been related to inhaled inorganic particulates in lungs, but the basic methods are applicable to any tissues. The preparations are primarily designed for SEM use, but they are stable for storage and transport to other laboratories and several other instruments (e.g., for SIMS techniques).


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
T Jankovic ◽  
G Zdunic ◽  
K Savikin ◽  
I Beara ◽  
N Mimica-Dukić

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 123
Author(s):  
Mariangela Marrelli ◽  
Maria Rosaria Perri ◽  
Valentina Amodeo ◽  
Francesca Giordano ◽  
Giancarlo A. Statti ◽  
...  

Photochemotherapy is one of the most interesting current therapeutic approaches for the treatment of melanoma. Different classes of naturally occurring phytochemicals demonstrated interesting photoactive properties. The aim of this study was to evaluate the photocytotoxic potential of two Cachrys species from Southern Italy: C. sicula and C. libanotis (Apiaceae). The enriched-coumarin extracts were obtained from aerial parts through both traditional maceration and pressurized cyclic solid-liquid (PCSL) extraction using Naviglio extractor®. Qualitative and quantitative analyses of furanocoumarins were performed with GC-MS. The photocytotoxic effects were verified on C32 melanoma cells irradiated at a dose of 1.08 J/cm2. The apoptotic responses were also assessed. Moreover, phenolic content and the in vitro antioxidant potential were estimated. Xanthotoxin, bergapten, and isopimpinellin were identified. All the samples induced concentration-dependent photocytotoxic effects (IC50 ranging from 3.16 to 18.18 μg/mL). The C. libanotis sample obtained with Naviglio extractor® was the most effective one (IC50 = 3.16 ± 0.21 μg/mL), followed by C. sicula sample obtained with the same technique (IC50 = 8.83 ± 0.20 μg/mL). Both Cachrys samples obtained through PCSL induced up-regulation of apoptotic signals such as BAX (Bcl2-associated X protein) and PARP (poly ADP-ribose polymerase) cleavage. Moreover, these samples proved to be more photoactive, giving a greater upregulation of p21 protein in the presence of UVA radiation. Obtained results suggest that investigated species could be promising candidates for further investigations aimed to find new potential drugs for the photochemotherapy of skin cancer.


2020 ◽  
Vol 5 (12) ◽  
pp. e002938
Author(s):  
Austin Carter ◽  
Nadia Akseer ◽  
Kevin Ho ◽  
Oliver Rothschild ◽  
Niranjan Bose ◽  
...  

This paper introduces a framework for conducting and disseminating mixed methods research on positive outlier countries that successfully improved their health outcomes and systems. We provide guidance on identifying exemplar countries, assembling multidisciplinary teams, collecting and synthesising pre-existing evidence, undertaking qualitative and quantitative analyses, and preparing dissemination products for various target audiences. Through a range of ongoing research studies, we illustrate application of each step of the framework while highlighting key considerations and lessons learnt. We hope uptake of this comprehensive framework by diverse stakeholders will increase the availability and utilisation of rigorous and comparable insights from global health success stories.


Sign in / Sign up

Export Citation Format

Share Document