Effect of IFN-γ on the immune response in vivo and on gene expression in vitro

Nature ◽  
1984 ◽  
Vol 307 (5949) ◽  
pp. 381-382 ◽  
Author(s):  
Masataka Nakamura ◽  
Tim Manser ◽  
Gregory D. N. Pearson ◽  
Michael J. Daley ◽  
Malcolm L. Gefter
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


2018 ◽  
Vol 17 (4) ◽  
pp. 1235-1246 ◽  
Author(s):  
Abdelnaser A. Badawy ◽  
Mohammed A. El-Magd ◽  
Sana A. AlSadrah

Background/Objectives: In the Middle East, people consume camel milk regularly as it is believed to improve immunity against diseases and decrease the risk for cancer. Recently, it was noted that most of the beneficial effects of milk come from their nanoparticles, especially exosomes. Herein, we evaluated the anticancer potential of camel milk and its exosomes on MCF7 breast cancer cells (in vitro and in vivo) and investigated the possible underlying molecular mechanism of action. Methods/Results: Administration of camel milk (orally) and its exosomes (orally and by local injection) decreased breast tumor progression as evident by ( a) higher apoptosis (indicated by higher DNA fragmentation, caspase-3 activity, Bax gene expression, and lower Bcl2 gene expression), ( b) remarkable inhibition of oxidative stress (decrease in MDA levels and iNOS gene expression); ( c) induction of antioxidant status (increased activities of SOD, CAT, and GPX), ( d) notable reduction in expression of inflammation-( IL1b, NFκB), angiogenesis-( VEGF) and metastasis-( MMP9, ICAM1) related genes; and ( e) higher immune response (high number of CD+4, CD+8, NK1.1 T cells in spleen). Conclusions: Overall, administration of camel milk–derived exosomes showed better anticancer effect, but less immune response, than treatment by camel milk. Moreover, local injection of exosomes led to better improvement than oral administration. These findings suggest that camel milk and its exosomes have anticancer effect possibly through induction of apoptosis and inhibition of oxidative stress, inflammation, angiogenesis and metastasis in the tumor microenvironment. Thus, camel milk and its exosomes could be used as an anticancer agent for cancer treatment.


Author(s):  
Bruna Lima Correa ◽  
Nadia El Harane ◽  
Ingrid Gomez ◽  
Hocine Rachid Hocine ◽  
José Vilar ◽  
...  

Abstract Aims The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. Methods and results Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. Conclusions EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1019-1019
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Elisa Orioli ◽  
Elena De Marchi ◽  
Sabina Sangaletti ◽  
...  

Abstract BACKGROUND: Overall survival of adult acute myeloid leukemia (AML) is still poor due to the lack of novel and effective therapies. In different malignancies including AML, some chemotherapy agents, such as daunorubicin (DNR) but not cytarabine (Ara-C), activate the immune response via the cross-priming of anti-tumor T cells by dendritic cells (DCs). Such process, known as immunogenic cell death (ICD), is characterized by intracellular and pericellular modifications of tumor cells, such as the cell surface translocation of calreticulin (CRT) and heat shock proteins 70/90 (HSPs 70/90), the extracellular release of ATP and pro-inflammatory factor HMGB1. Alongside with ICD, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, which may ultimately affect anti-tumor T-cell responses. In this study, we characterize ICD in AML to evaluate the involvement of some DC-related inhibitory pathways, such as the expression of indoleamine-2,3-dioxygenase 1 (IDO1) and the activation of PD-L1/PD-1 axis. METHODS: AML patients were analyzed at diagnosis.Before and after DNR-based chemotherapy, patient-derived T cells were extensively characterized by FACS and analyzed for their capacity to produce IFN-γ in response to autologous blasts. The AML cell line HL-60 and primary AML cells were then exposed, in vitro, to different drugs, including DNR and, as control drug, Ara-C. Dying cells were tested for the surface expression of CRT and HSPs 70/90, the release of HMGB1 and ATP. Functionally, immature DCs generated from healthy donors were pulsed with DNR-treated AML cells. Then, loaded DCs were tested for the expression of maturation-associated markers and of inhibitory pathways, such as IDO1 and PD-L1 and used to stimulate autologous CD3+ T cells. After co-culture, autologous healthy donor T cells were analyzed for IFN-g production, PD-1 expression and Tregs induction. A mouse model was set up to investigate in vivo the mechanism(s) underlying ICD in AML. The murine myelomonocytic leukemia cell line WEHI was transfected with luciferase PmeLUC probe, inoculated subcutaneously into BALB/c mice and used to measure in vivo ATP release after chemotherapy. Tumor-infiltrating T cells and DCs were characterized and correlated with ATP release. RESULTS: DNR treatment induced ICD-related modifications in both AML cell lines and primary blasts, including CRT, HSP70 and HSP90 exposure on cell surface, HMGB1 release from nucleus to cytoplasm and supernatant increase of ATP. Ex vivo, T-cell monitoring of DNR-treated AML patients displayed an increase in leukemia-specific IFN-g-producing CD4+ and CD8+ T cells in 20/28 evaluated patients. However, FACS analysis of CD8+ effector T cells emerging after chemotherapy showed a significant up-regulation of exhaustion marker such as LAG3 and PD-1, which paralleled with their reduced ability to produce active effector molecules, such as perforin and granzyme. Moreover, an increase of circulating Tregs was observed after DNR-based chemotherapy. In vitro, loading of chemotherapy-treated AML cells into DCs resulted not only in the induction of a maturation phenotype, but also in over-expression of inhibitory pathways, such as IDO1 and PD-L1. The silencing of IDO1 increased the capacity of DCs loaded with DNR-treated AML cells to induce leukemia-specific IFN-γ production by CD4+ and CD8+ T cells. In vivo, DNR therapy of mice inoculated with established murine AML cell line resulted in increased ATP release. Similarly to ex vivo and in vitro results, tumor-infiltrating DCs showed an increase in maturation status. Moreover, CD4+ and CD8+ T cells had increased IFN-γ production, but showed an exhausted phenotype. CONCLUSIONS: Our data confirm that chemotherapy-induced ICD may be active in AML and results in increased leukemia-specific T-cell immune response. However, a deep, ex vivo, in vitro and in vivo characterization of chemotherapy-induced T cells demonstrated an exhausted phenotype, which may be the result of the inhibitory pathways induction in DCs, such as IDO and PD-L1. The present data suggest that combination of chemotherapy with inhibitors of IDO1 and PD-L1 may represent an interesting approach to potentiate the immunogenic effect of chemotherapy, thus resulting in increased anti-leukemia immune response. Disclosures Cavo: Janssen-Cilag, Celgene, Amgen, BMS: Honoraria.


2007 ◽  
Vol 75 (8) ◽  
pp. 3791-3801 ◽  
Author(s):  
Hideki Hara ◽  
Ikuo Kawamura ◽  
Takamasa Nomura ◽  
Takanari Tominaga ◽  
Kohsuke Tsuchiya ◽  
...  

ABSTRACT Listeria monocytogenes evades the antimicrobial mechanisms of macrophages by escaping from the phagosome into the cytosolic space via a unique cytolysin that targets the phagosomal membrane, listeriolysin O (LLO), encoded by hly. Gamma interferon (IFN-γ), which is known to play a pivotal role in the induction of Th1-dependent protective immunity in mice, appears to be produced, depending on the bacterial virulence factor. To determine whether the LLO molecule (the major virulence factor of L. monocytogenes) is indispensable or the escape of bacteria from the phagosome is sufficient to induce IFN-γ production, we first constructed an hly-deleted mutant of L. monocytogenes and then established isogenic L. monocytogenes mutants expressing LLO or ivanolysin O (ILO), encoded by ilo from Listeria ivanovii. LLO-expressing L. monocytogenes was highly capable of inducing IFN-γ production and Listeria-specific protective immunity, while the hly-deleted mutant was not. In contrast, the level of IFN-γ induced by ILO-expressing L. monocytogenes was significantly lower both in vitro and in vivo, despite the ability of this strain to escape the phagosome and the intracellular multiplication at a level equivalent to that of LLO-expressing L. monocytogenes. Only a negligible level of protective immunity was induced in mice against challenge with LLO- and ILO-expressing L. monocytogenes. These results clearly show that escape of the bacterium from the phagosome is a prerequisite but is not sufficient for the IFN-γ-dependent Th1 response against L. monocytogenes, and some distinct molecular nature of LLO is indispensable for the final induction of IFN-γ that is essentially required to generate a Th1-dependent immune response.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1384
Author(s):  
Haibo Feng ◽  
Jie Yang ◽  
Hui Zhi ◽  
Xin Hu ◽  
Yan Yang ◽  
...  

In this investigation, to maximize the desired immunoenhancement effects of PsEUL and stimulate an efficient humoral and cellular immune response against an antigen, PsEUL and the model antigen ovalbumin (OVA) were coupled using the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) reaction to yield a novel delivery system (PsEUL-OVA). The physicochemical characteristics and immune regulation effects of this new system were investigated. We found the yield of this EDC method to be 46.25%. In vitro, PsEUL-OVA (200 μg mL−1) could enhance macrophage proliferation and increase their phagocytic efficiency. In vivo, PsEUL-OVA could significantly increase the levels of OVA-specific antibody (IgG, IgG1, IgG2a, and IgG2b) titers and cytokine (IL-2, IL-4, IL-6, IFN-γ) levels. Additionally, it could activate T lymphocytes and facilitate the maturation of dendritic cells (DCs). These findings collectively suggested that PsEUL-OVA induced humoral and cellular immune responses by promoting the phagocytic activity of macrophages and DCs. Taken together, these results revealed that PsEUL-OVA had the potential to improve immune responses and provide a promising theoretical basis for the design of a novel delivery system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei He ◽  
Jun Xiao ◽  
Lei Song ◽  
Rui Zhou ◽  
Zhigang Rong ◽  
...  

Bone defects are a common orthopaedic concern, and an increasing number of tissue-engineered bones (TEBs) are used to repair bone defects. Allogeneic mesenchymal stem cells (allo-MSCs) are used as seed cells in many approaches to develop TEB constructs, but the immune response caused by allogeneic transplantation may lead to transplant failure. V gamma 4 T (Vγ4T) cells play an important role in mediating the immune response in the early stage after transplantation; therefore, we wanted to verify whether suppressing Vγ4T cells by herpesvirus entry mediator (HVEM)/B and T lymphocyte attenuator (BTLA) signalling can promote MSCs osteogenesis in the transplanted area. In vitro experiments showed that the osteogenic differentiation of MSCs and Vγ4T cells was weakened after co-culture, and an increase in interleukin-17 (IL-17) and interferon-γ (IFN-γ) levels was detected in the culture supernatant. HVEM-transfected MSCs (MSCs-HVEM) still exhibited osteogenic differentiation activity after co-culture with Vγ4T cells, and the levels of IL-17 and IFN-γ in the co-culture supernatant were significantly reduced. In vivo experiments revealed that inflammation in the transplanted area was reduced and osteogenic repair was enhanced after Vγ4T cells were removed. MSCs-HVEM can also consistently contribute to reduced inflammation in the transplanted area and enhanced bone repair in wild-type (WT) mice. Therefore, our experiments verified that HVEM can promote the osteogenesis of allo-MSCs by inhibiting IL-17 and IFN-γ secretion from Vγ4T cells.


Author(s):  
Xiang Li ◽  
Liang Dong ◽  
Jiejie Liu ◽  
Chunmeng Wang ◽  
Yan Zhang ◽  
...  

BackgroundCD4+ T cells play multiple roles in controlling tumor growth and increasing IFN-γ+ T-helper 1 cell population could promote cell-mediated anti-tumor immune response. We have previously showed that low-dose DNA demethylating agent decitabine therapy promotes CD3+ T-cell proliferation and cytotoxicity; however, direct regulation of purified CD4+ T cells and the underlying mechanisms remain unclear.MethodsThe effects of low-dose decitabine on sorted CD4+ T cells were detected both in vitro and in vivo. The activation, proliferation, intracellular cytokine production and cytolysis activity of CD4+ T cells were analyzed by FACS and DELFIA time-resolved fluorescence assays. In vivo ubiquitination assay was performed to assess protein degradation. Moreover, phosphor-p65 and IκBα levels were detected in sorted CD4+ T cells from solid tumor patients with decitabine-based therapy.ResultsLow-dose decitabine treatment promoted the proliferation and activation of sorted CD4+ T cells, with increased frequency of IFN-γ+ Th1 subset and enhanced cytolytic activity in vitro and in vivo. NF-κB inhibitor, BAY 11-7082, suppressed decitabine-induced CD4+ T cell proliferation and IFN-γ production. In terms of mechanism, low-dose decitabine augmented the expression of E3 ligase β-TrCP, promoted the ubiquitination and degradation of IκBα and resulted in NF-κB activation. Notably, we observed that in vitro low-dose decitabine treatment induced NF-κB activation in CD4+ T cells from patients with a response to decitabine-primed chemotherapy rather than those without a response.ConclusionThese data suggest that low-dose decitabine potentiates CD4+ T cell anti-tumor immunity through enhancing IκBα degradation and therefore NF-κB activation and IFN-γ production.


1994 ◽  
Vol 180 (2) ◽  
pp. 693-698 ◽  
Author(s):  
P Lu ◽  
X Zhou ◽  
S J Chen ◽  
M Moorman ◽  
S C Morris ◽  
...  

The costimulatory signal provided to T cells through CTLA-4-ligand interactions is required for T cell activation resulting in increased interleukin 2 (IL-2) production in vitro, but its role in the production of IL-4 and other cytokines is unclear and few in vivo studies have been performed to confirm results of in vitro experiments. We have examined the in vivo effects of blocking CTLA-4 ligands on the T helper cell 2 (Th2)-associated mucosal immune response that follows oral infection of mice with the nematode parasite, Heligmosomoides polygyrus. CTLA-4Ig administration inhibited H. polygyrus-induced increases in mesenteric lymph node (MLN) B cell major histocompatibility complex class II expression and size and T cell-derived IL-4 gene expression. In addition, CTLA-4 immunoglobulin (Ig) partially blocked increased IL-3, IL-5, and IL-9 cytokine gene expression in Peyer's patch (PP) and MLN 8 d after primary inoculation of mice with the parasite. Increases in the number of IL-4- but not IL-5-secreting cells were also inhibited by CTLA-4Ig. H. polygyrus-induced elevations in serum IgE levels but not blood eosinophils, were markedly inhibited by CTLA-4Ig. These results suggest that stimulation of CD28 and/or CTLA-4 is required for T cell priming leading to IL-4 cytokine production, B cell activation, and IgE secretion during a Th2-like, mucosal immune response to a nematode parasite.


2020 ◽  
Author(s):  
Jianjian Yang ◽  
Xue Wang ◽  
Bing Huang ◽  
Rong Liu ◽  
Hui Xiong ◽  
...  

Abstract Background Active IFN-γ signaling is a common feature of tumors responding to PD-1 checkpoint blockade. IFN-γ exhibits both anti- and pro-tumor activities. Therefore, identifying the pro-tumor effects of IFN-γ and their underlying molecular mechanisms could be a critical step for developing therapeutic strategies to maximize the anti-tumor efficacy of immunotherapies. Methods Western blot, immunofluorescence, and quantitative real-time PCR assays were used to evaluate the expression of ZEB1 and EMT associated biomarkers. Trans-well assay was used to examine the role of IFN-γ on cancer cell migration in vitro. Murine tumor xenograft models were performed to examine the effect of IFN-γ on cancer cell metastasis in vivo. Colony formation assay was performed to detect the role of ZEB1 in cell proliferation. RNA-seq was performed to analyze the EMT-associated gene expression patterns in response to IFN-g treatment. Loss-of-function analysis and chromatin immunoprecipitation were used to reveal the mechanism underlying ZEB1 induction by IFN-γ. Results we demonstrate that the treatment of lung adenocarcinoma cells with IFN-γ leads to a rapid increase of ZEB1 expression and a significant change in epithelial-mesenchymal-transition (EMT)-associated gene expression patterns. Moreover, functional analysis shows that IFN-γ promotes cell migration in vitro and metastasis in vivo. Mechanistically, IFN-γ-induced JMJD3 significantly reduces H3K27 trimethylation in the promoter of the ZEB1 gene, thereby activating ZEB1 transcription. Inhibition of JMJD3 abrogates IFN-γ-induced ZEB1 expression. We previously demonstrated that IFN-γ-mediated anti-tumor response, including suppression of cell proliferation and induction of CXCL9 and CXCL10 expression, is STAT1-IRF1 dependent. The knockdown of ZEB1 diminishes IFN-γ-mediated cell migration and metastasis, but it does not affect STAT1 and IRF1 expression and has no effect on cell proliferation as well as the induction of CXCL9 and CXCL10 expression. Conclusion Inhibition or downregulation of ZEB1 may prevent the pro-tumor activity of IFN-γ while retaining its anti-tumor function. The study expands our understanding of IFN-γ-mediated signaling and helps to identify therapeutic targets to improve current immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document