scholarly journals Fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lizhong Sun ◽  
Libang He ◽  
Wei Wu ◽  
Li Luo ◽  
Mingyue Han ◽  
...  

AbstractUnrestrained inflammation is harmful to tissue repair and regeneration. Immune cell membrane-camouflaged nanoparticles have been proven to show promise as inflammation targets and multitargeted inflammation controls in the treatment of severe inflammation. Prevention and early intervention of inflammation can reduce the risk of irreversible tissue damage and loss of function, but no cell membrane-camouflaged nanotechnology has been reported to achieve stage-specific treatment in these conditions. In this study, we investigated the prophylactic and therapeutic efficacy of fibroblast membrane-camouflaged nanoparticles for topical treatment of early inflammation (early pulpitis as the model) with the help of in-depth bioinformatics and molecular biology investigations in vitro and in vivo. Nanoparticles have been proven to act as sentinels to detect and competitively neutralize invasive Escherichia coli lipopolysaccharide (E. coli LPS) with resident fibroblasts to effectively inhibit the activation of intricate signaling pathways. Moreover, nanoparticles can alleviate the secretion of multiple inflammatory cytokines to achieve multitargeted anti-inflammatory effects, attenuating inflammatory conditions in the early stage. Our work verified the feasibility of fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage, which widens the potential cell types for inflammation regulation.

2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Dalia Martinez-Marin ◽  
Courtney Jarvis ◽  
Thomas Nelius ◽  
Stéphanie Filleur

Abstract Macrophages have been recognized as the main inflammatory component of the tumor microenvironment. Although often considered as beneficial for tumor growth and disease progression, tumor-associated macrophages have also been shown to be detrimental to the tumor depending on the tumor microenvironment. Therefore, understanding the molecular interactions between macrophages and tumor cells in relation to macrophages functional activities such as phagocytosis is critical for a better comprehension of their tumor-modulating action. Still, the characterization of these molecular mechanisms in vivo remains complicated due to the extraordinary complexity of the tumor microenvironment and the broad range of tumor-associated macrophage functions. Thus, there is an increasing demand for in vitro methodologies to study the role of cell–cell interactions in the tumor microenvironment. In the present study, we have developed live co-cultures of macrophages and human prostate tumor cells to assess the phagocytic activity of macrophages using a combination of Confocal and Nomarski Microscopy. Using this model, we have emphasized that this is a sensitive, measurable, and highly reproducible functional assay. We have also highlighted that this assay can be applied to multiple cancer cell types and used as a selection tool for a variety of different types of phagocytosis agonists. Finally, combining with other studies such as gain/loss of function or signaling studies remains possible. A better understanding of the interactions between tumor cells and macrophages may lead to the identification of new therapeutic targets against cancer.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Kang ◽  
Marjan Nasr ◽  
Yiru Guo ◽  
Shizuka Uchida ◽  
Tyler Weirick ◽  
...  

Abstract Although cardiac mesenchymal cell (CMC) therapy mitigates post-infarct cardiac dysfunction, the underlying mechanisms remain unidentified. It is acknowledged that donor cells are neither appreciably retained nor meaningfully contribute to tissue regeneration—suggesting a paracrine-mediated mechanism of action. As the immune system is inextricably linked to wound healing/remodeling in the ischemically injured heart, the reparative actions of CMCs may be attributed to their immunoregulatory properties. The current study evaluated the consequences of CMC administration on post myocardial infarction (MI) immune responses in vivo and paracrine-mediated immune cell function in vitro. CMC administration preferentially elicited the recruitment of cell types associated with innate immunity (e.g., monocytes/macrophages and neutrophils). CMC paracrine signaling assays revealed enhancement in innate immune cell chemoattraction, survival, and phagocytosis, and diminished pro-inflammatory immune cell activation; data that identifies and catalogues fundamental immunomodulatory properties of CMCs, which have broad implications regarding the mechanism of action of CMCs in cardiac repair.


2020 ◽  
Vol 12 (570) ◽  
pp. eaba1871
Author(s):  
Selene Lomoio ◽  
Rachel Willen ◽  
WonHee Kim ◽  
Kevin Z. Ho ◽  
Edward K. Robinson ◽  
...  

Axonal dystrophy, indicative of perturbed axonal transport, occurs early during Alzheimer’s disease (AD) pathogenesis. Little is known about the mechanisms underlying this initial sign of the pathology. This study proves that Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) loss of function, due to Gga3 genetic deletion or a GGA3 rare variant that cosegregates with late-onset AD, disrupts the axonal trafficking of the β-site APP-cleaving enzyme 1 (BACE1) resulting in its accumulation in axonal swellings in cultured neurons and in vivo. We show that BACE pharmacological inhibition ameliorates BACE1 axonal trafficking and diminishes axonal dystrophies in Gga3 null neurons in vitro and in vivo. These data indicate that axonal accumulation of BACE1 engendered by GGA3 loss of function results in local toxicity leading to axonopathy. Gga3 deletion exacerbates axonal dystrophies in a mouse model of AD before β-amyloid (Aβ) deposition. Our study strongly supports a role for GGA3 in AD pathogenesis, where GGA3 loss of function triggers BACE1 axonal accumulation independently of extracellular Aβ, and initiates a cascade of events leading to the axonal damage distinctive of the early stage of AD.


2015 ◽  
Vol 113 (1) ◽  
pp. 182-187 ◽  
Author(s):  
Christina H. Eng ◽  
Zuncai Wang ◽  
Diane Tkach ◽  
Lourdes Toral-Barza ◽  
Savuth Ugwonali ◽  
...  

Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic loss-of-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagy-related 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.


Author(s):  
Denuja Karunakaran ◽  
My-Anh Nguyen ◽  
Michele Geoffrion ◽  
Dianne Vreeken ◽  
Zachary Lister ◽  
...  

Background: Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. Previously, we showed that macrophages in the atherogenic plaque undergo RIPK3-MLKL-dependent programmed necroptosis in response to sterile ligands such as oxidized LDL and damage-associated patterns (DAMPs) and necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1, which acts as a master switch that controls whether the cell undergoes NFκB-dependent inflammation, caspase-dependent apoptosis or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is largely driven by NFκB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NFκB-dependent inflammation in early atherogenic lesions and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. Methods: We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and using loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 anti-sense oligonucleotides (ASO) to Apoe -/- mice fed a cholesterol-rich (Western) diet for 8 weeks. Results: We find RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 ASOs led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, p<0.01) and plasma inflammatory cytokines (IL-1α, IL-17A, p<0.05) compared to controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NFκB, TNFα, IL-1α) and in vivo LPS- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin and monocyte attachment. Conclusions: We have identified RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.


2014 ◽  
Vol 94 (3) ◽  
pp. 795-858 ◽  
Author(s):  
Jaap G. Neels ◽  
Paul A. Grimaldi

The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.


2020 ◽  
Author(s):  
Aditi Bhargava ◽  
Peter Ohara ◽  
Luc Jasmin

AbstractDelivery of therapeutic moieties to specific cell types, such as neurons remains a challenge. Genes present in neurons are also expressed in non-neuronal cell types such as glia where they mediate non-targeted related functions. Thus, non-specific targeting of these proteins/channels has numerous unwanted side effects, as is the case with current small molecules or drug therapies. Current methodologies that use nanoparticles, lipid-mediated uptake, or mannitol in conjunction with lipids to deliver double-stranded RNA (dsRNA) have yielded mixed and unreliable results. We used a neuroanatomical tracer (B subunit of Cholera Toxin (CTB)) that binds to the ganglioside receptors (GM1) expressed on cells, including primary sensory neurons to deliver encapsulated dsRNA. This approach greatly improved delivery of dsRNA to the desired cells by enhancing uptake, reducing vehicle-mediated toxicity and protecting nucleotides from degradation by endonucleases. The delivery complex is internalized, and once inside the cell, the dsRNA naturally dissociates itself from the carrier complex and is very effective in knocking down cognate targets, both in vivo and in vitro. Past methods have used CTB-fusion proteins or chemically modified oligos or DNA moieties that have been covalently conjugated to CTB. Furthermore, CTB conjugated to an antigen, protein, or chemically modified nucleic acid is a potent activator of immune cell (T and B cells, macrophages) response, whereas CTB admixed with antigens or unmodified nucleic acids does not evoke this immune response. Importantly, in our method, the nucleic acids are not covalently linked to the carrier molecules. Thus, our method holds strong potential for targeted delivery of therapeutic moieties for cell types expressing GM1 receptors, including neuronal cell types.


Reproduction ◽  
2014 ◽  
Vol 148 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Heather Talbott ◽  
Abigail Delaney ◽  
Pan Zhang ◽  
Yangsheng Yu ◽  
Robert A Cushman ◽  
...  

Recent studies have suggested that chemokines may mediate the luteolytic action of prostaglandin F2α (PGF). Our objective was to identify chemokines induced by PGFin vivoand to determine the effects of interleukin 8 (IL8) on specific luteal cell typesin vitro. Mid-cycle cows were injected with saline or PGF, ovaries were removed after 0.5–4 h, and expression of chemokine was analyzed by qPCR.In vitroexpression of IL8 was analyzed after PGF administration and with cell signaling inhibitors to determine the mechanism of PGF-induced chemokine expression. Purified neutrophils were analyzed for migration and activation in response to IL8 and PGF. Purified luteal cell types (steroidogenic, endothelial, and fibroblast cells) were used to identify which cells respond to chemokines. Neutrophils and peripheral blood mononuclear cells (PBMCs) were cocultured with steroidogenic cells to determine their effect on progesterone production.IL8,CXCL2,CCL2, andCCL8transcripts were rapidly increased following PGF treatmentin vivo. The stimulatory action of PGF onIL8mRNA expressionin vitrowas prevented by inhibition of p38 and JNK signaling. IL8, but not PGF, TNF, or TGFB1, stimulated neutrophil migration. IL8 had no apparent action in purified luteal steroidogenic, endothelial, or fibroblast cells, but stimulated ERK phosphorylation in neutrophils. In coculture experiments neither IL8 nor activated neutrophils altered basal or LH-stimulated luteal cell progesterone synthesis. In contrast, activated PBMCs inhibited LH-stimulated progesterone synthesis from cultured luteal cells. These data implicate a complex cascade of events during luteolysis, involving chemokine signaling, neutrophil recruitment, and immune cell action within the corpus luteum.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1062-1062 ◽  
Author(s):  
Geoffrey M. Matthews ◽  
Sara Gandolfi ◽  
Johanna Bruggentheis ◽  
Ricardo De Matos Simoes ◽  
Dennis L Buckley ◽  
...  

Abstract Multiple myeloma (MM) remains an incurable malignancy with a clear need for novel therapeutic modalities. Moreover, acquired or de novo resistance to established or novel therapeutics remains a major challenge in this, and other, neoplasias. BET Bromodomain inhibitors (BBIs), including JQ1, have potent anti-MM activity in vitro and in in vivo, but do not provide curative outcome and do not induce apoptosis in many tumor cell types. Recently, a "next-generation" BBI, dBET, that causes degradation of BET Bromodomains (BRDs) through CRBN-mediated ubiquitination has been demonstrated to have potent activity in leukemia and myeloma. Here we sought to compare the mechanistic differences between BRD inhibition with BRD degradation in treatment-naive and drug-resistant MM. Additionally, we posited that resistance to dBET treatment could emerge through genetic perturbations and wished to uncover potential mechanisms prior to its clinical utilization. To address this, we compared effects of JQ1 with lead optimized compound dBET6, in a panel of human MM cell lines (± stromal cells), including clones resistant to JQ1, bortezomib and IMIDs, and assessed viability using CS-BLI/CTG assay. RNAseq and reverse phase protein arrays (RPPA) were employed to compare the transcriptional and translational effects of BRD degradation vs. inhibition. Using an open-ended unbiased genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)-associated Cas9 approach, we examined whether we could uncover genes associated with resistance to dBET6. MM1.S cells were transduced with Cas9 and pooled lentiviral particles of the GeCKO library, consisting of 2 pooled sgRNA sub-libraries (~120,000 sgRNAs; targeting ~19,000 genes and ~1800 miRNAs). Using this CRISPR/Cas9-based approach we sought to expedite the isolation of MM cells resistant to dBET6. We treated the pool of cells thrice with dBET (250nM), allowing regrowth between treatments and maintaining a coverage of 1000 cells/sgRNA. dBET6-resistant cells were processed to quantify sgRNA enrichment or depletion, using deep sequencing. We observed dBET6 to have significantly greater potency against MM cells than JQ1, or its combination with lenalidomide, and that MM1S.CRBN-/- cells were resistant to dBET6. Resistance to neither JQ1 nor bortezomib conferred resistance to dBET6. We observed dBET6 to induce rapid and robust (<4hrs) degradation of BRD2, BRD3 and BRD4 and loss of c-MYC protein, compared with JQ1 which caused an apparent increase in BRD4 protein and significantly less c-MYC down-regulation. Interestingly, while dBET6 caused a time-dependent reduction in pro-survival Mcl-1 protein (among others) and increased cleavage of caspase-3/7, JQ1 caused Mcl-1 upregulation and did not induce cleavage of caspase-3/7. As predicted, our CRISPR/Cas9 screen identified significant enrichment of sgRNAs targeting CRBN, as well as several members of the Cullin-RING ligase (CRL) complex, known to play a critical role in E3 ubiquitin ligase activity. Preliminary experiments using individual sgRNAs appear to validate the role the CRL complex in dBET resistance. In summary, our data strongly support the development of dBET for the treatment of treatment-naive and drug-resistant MM. We demonstrate overlapping and distinct mechanisms of action between BRD inhibition vs. degradation and suggest that differential potencies of JQ1 vs. dBET is, at least in part, due to far greater loss of c-MYC and Mcl-1 expression, however further analysis is warranted. Additionally, our results demonstrate that loss of function of CRBN or the CRL complex induces dBET resistance by perturbing dBET-mediated BRD4 degradation. However, it is plausible that additional CRBN/CRL-independent mechanisms of dBET resistance exist that allow cells to survive despite complete degradation of BRDs and this will be a key question to be answered in future studies. Disclosures Bradner: Novartis Institutes for BioMedical Research: Employment.


Sign in / Sign up

Export Citation Format

Share Document