scholarly journals Reconstructing neuronal circuitry from parallel spike trains

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryota Kobayashi ◽  
Shuhei Kurita ◽  
Anno Kurth ◽  
Katsunori Kitano ◽  
Kenji Mizuseki ◽  
...  

Abstract State-of-the-art techniques allow researchers to record large numbers of spike trains in parallel for many hours. With enough such data, we should be able to infer the connectivity among neurons. Here we develop a method for reconstructing neuronal circuitry by applying a generalized linear model (GLM) to spike cross-correlations. Our method estimates connections between neurons in units of postsynaptic potentials and the amount of spike recordings needed to verify connections. The performance of inference is optimized by counting the estimation errors using synthetic data. This method is superior to other established methods in correctly estimating connectivity. By applying our method to rat hippocampal data, we show that the types of estimated connections match the results inferred from other physiological cues. Thus our method provides the means to build a circuit diagram from recorded spike trains, thereby providing a basis for elucidating the differences in information processing in different brain regions.

2018 ◽  
Author(s):  
Ryota Kobayashi ◽  
Shuhei Kurita ◽  
Katsunori Kitano ◽  
Kenji Mizuseki ◽  
Barry J. Richmond ◽  
...  

State-of-the-art techniques allow researchers to record large numbers of spike trains parallel for many hours. With enough such data, we should be able to infer the connectivity among neurons. Here we develop a computationally realizable method for reconstructing neuronal circuitry by applying a generalized linear model (GLM) to spike crosscorrelations. Our method estimates interneuronal connections in units of postsynaptic potentials and the amount of spike recording needed for verifying connections. The performance of inference is optimized by counting the estimation errors using synthetic data from a network of Hodgkin-Huxley type neurons. By applying our method to rat hippocampal data, we show that the numbers and types of connections estimated from our calculations match the results inferred from other physiological cues. Our method provides the means to build a circuit diagram from recorded spike trains, thereby providing a basis for elucidating the differences in information processing in different brain regions.


2018 ◽  
Vol 4 (8) ◽  
pp. 98 ◽  
Author(s):  
Simone Bianco ◽  
Gianluigi Ciocca ◽  
Davide Marelli

Structure from Motion (SfM) is a pipeline that allows three-dimensional reconstruction starting from a collection of images. A typical SfM pipeline comprises different processing steps each of which tackles a different problem in the reconstruction pipeline. Each step can exploit different algorithms to solve the problem at hand and thus many different SfM pipelines can be built. How to choose the SfM pipeline best suited for a given task is an important question. In this paper we report a comparison of different state-of-the-art SfM pipelines in terms of their ability to reconstruct different scenes. We also propose an evaluation procedure that stresses the SfM pipelines using real dataset acquired with high-end devices as well as realistic synthetic dataset. To this end, we created a plug-in module for the Blender software to support the creation of synthetic datasets and the evaluation of the SfM pipeline. The use of synthetic data allows us to easily have arbitrarily large and diverse datasets with, in theory, infinitely precise ground truth. Our evaluation procedure considers both the reconstruction errors as well as the estimation errors of the camera poses used in the reconstruction.


2008 ◽  
Vol 600-603 ◽  
pp. 895-900 ◽  
Author(s):  
Anant K. Agarwal ◽  
Albert A. Burk ◽  
Robert Callanan ◽  
Craig Capell ◽  
Mrinal K. Das ◽  
...  

In this paper, we review the state of the art of SiC switches and the technical issues which remain. Specifically, we will review the progress and remaining challenges associated with SiC power MOSFETs and BJTs. The most difficult issue when fabricating MOSFETs has been an excessive variation in threshold voltage from batch to batch. This difficulty arises due to the fact that the threshold voltage is determined by the difference between two large numbers, namely, a large fixed oxide charge and a large negative charge in the interface traps. There may also be some significant charge captured in the bulk traps in SiC and SiO2. The effect of recombination-induced stacking faults (SFs) on majority carrier mobility has been confirmed with 10 kV Merged PN Schottky (MPS) diodes and MOSFETs. The same SFs have been found to be responsible for degradation of BJTs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
João Lobo ◽  
Rui Henriques ◽  
Sara C. Madeira

Abstract Background Three-way data started to gain popularity due to their increasing capacity to describe inherently multivariate and temporal events, such as biological responses, social interactions along time, urban dynamics, or complex geophysical phenomena. Triclustering, subspace clustering of three-way data, enables the discovery of patterns corresponding to data subspaces (triclusters) with values correlated across the three dimensions (observations $$\times$$ × features $$\times$$ × contexts). With increasing number of algorithms being proposed, effectively comparing them with state-of-the-art algorithms is paramount. These comparisons are usually performed using real data, without a known ground-truth, thus limiting the assessments. In this context, we propose a synthetic data generator, G-Tric, allowing the creation of synthetic datasets with configurable properties and the possibility to plant triclusters. The generator is prepared to create datasets resembling real 3-way data from biomedical and social data domains, with the additional advantage of further providing the ground truth (triclustering solution) as output. Results G-Tric can replicate real-world datasets and create new ones that match researchers needs across several properties, including data type (numeric or symbolic), dimensions, and background distribution. Users can tune the patterns and structure that characterize the planted triclusters (subspaces) and how they interact (overlapping). Data quality can also be controlled, by defining the amount of missing, noise or errors. Furthermore, a benchmark of datasets resembling real data is made available, together with the corresponding triclustering solutions (planted triclusters) and generating parameters. Conclusions Triclustering evaluation using G-Tric provides the possibility to combine both intrinsic and extrinsic metrics to compare solutions that produce more reliable analyses. A set of predefined datasets, mimicking widely used three-way data and exploring crucial properties was generated and made available, highlighting G-Tric’s potential to advance triclustering state-of-the-art by easing the process of evaluating the quality of new triclustering approaches.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 674
Author(s):  
Kushani De De Silva ◽  
Carlo Cafaro ◽  
Adom Giffin

Attaining reliable gradient profiles is of utmost relevance for many physical systems. In many situations, the estimation of the gradient is inaccurate due to noise. It is common practice to first estimate the underlying system and then compute the gradient profile by taking the subsequent analytic derivative of the estimated system. The underlying system is often estimated by fitting or smoothing the data using other techniques. Taking the subsequent analytic derivative of an estimated function can be ill-posed. This becomes worse as the noise in the system increases. As a result, the uncertainty generated in the gradient estimate increases. In this paper, a theoretical framework for a method to estimate the gradient profile of discrete noisy data is presented. The method was developed within a Bayesian framework. Comprehensive numerical experiments were conducted on synthetic data at different levels of noise. The accuracy of the proposed method was quantified. Our findings suggest that the proposed gradient profile estimation method outperforms the state-of-the-art methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daisuke Endo ◽  
Ryota Kobayashi ◽  
Ramon Bartolo ◽  
Bruno B. Averbeck ◽  
Yasuko Sugase-Miyamoto ◽  
...  

AbstractThe recent increase in reliable, simultaneous high channel count extracellular recordings is exciting for physiologists and theoreticians because it offers the possibility of reconstructing the underlying neuronal circuits. We recently presented a method of inferring this circuit connectivity from neuronal spike trains by applying the generalized linear model to cross-correlograms. Although the algorithm can do a good job of circuit reconstruction, the parameters need to be carefully tuned for each individual dataset. Here we present another method using a Convolutional Neural Network for Estimating synaptic Connectivity from spike trains. After adaptation to huge amounts of simulated data, this method robustly captures the specific feature of monosynaptic impact in a noisy cross-correlogram. There are no user-adjustable parameters. With this new method, we have constructed diagrams of neuronal circuits recorded in several cortical areas of monkeys.


2021 ◽  
Author(s):  
◽  
J. N. Mendoza Chavarría

Spectral unmixing has proven to be a great tool for the analysis of hyperspectral data, with linear mixing models (LMMs) being the most used in the literature. Nevertheless, due to the limitations of the LMMs to accurately describe the multiple light scattering effects in multi and hyperspectral imaging, new mixing models have emerged to describe nonlinear interactions. In this paper, we propose a new nonlinear unmixing algorithm based on a multilinear mixture model called Non-linear Extended Blind Endmember and Abundance Extraction (NEBEAE), which is based on a linear unmixing method established in the literature. The results of this study show that proposed method decreases the estimation errors of the spectral signatures and abundance maps, as well as the execution time with respect the state of the art methods.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 227
Author(s):  
Eckart Michaelsen ◽  
Stéphane Vujasinovic

Representative input data are a necessary requirement for the assessment of machine-vision systems. For symmetry-seeing machines in particular, such imagery should provide symmetries as well as asymmetric clutter. Moreover, there must be reliable ground truth with the data. It should be possible to estimate the recognition performance and the computational efforts by providing different grades of difficulty and complexity. Recent competitions used real imagery labeled by human subjects with appropriate ground truth. The paper at hand proposes to use synthetic data instead. Such data contain symmetry, clutter, and nothing else. This is preferable because interference with other perceptive capabilities, such as object recognition, or prior knowledge, can be avoided. The data are given sparsely, i.e., as sets of primitive objects. However, images can be generated from them, so that the same data can also be fed into machines requiring dense input, such as multilayered perceptrons. Sparse representations are preferred, because the author’s own system requires such data, and in this way, any influence of the primitive extraction method is excluded. The presented format allows hierarchies of symmetries. This is important because hierarchy constitutes a natural and dominant part in symmetry-seeing. The paper reports some experiments using the author’s Gestalt algebra system as symmetry-seeing machine. Additionally included is a comparative test run with the state-of-the-art symmetry-seeing deep learning convolutional perceptron of the PSU. The computational efforts and recognition performance are assessed.


2020 ◽  
Author(s):  
Alceu Bissoto ◽  
Sandra Avila

Melanoma is the most lethal type of skin cancer. Early diagnosis is crucial to increase the survival rate of those patients due to the possibility of metastasis. Automated skin lesion analysis can play an essential role by reaching people that do not have access to a specialist. However, since deep learning became the state-of-the-art for skin lesion analysis, data became a decisive factor in pushing the solutions further. The core objective of this M.Sc. dissertation is to tackle the problems that arise by having limited datasets. In the first part, we use generative adversarial networks to generate synthetic data to augment our classification model’s training datasets to boost performance. Our method generates high-resolution clinically-meaningful skin lesion images, that when compound our classification model’s training dataset, consistently improved the performance in different scenarios, for distinct datasets. We also investigate how our classification models perceived the synthetic samples and how they can aid the model’s generalization. Finally, we investigate a problem that usually arises by having few, relatively small datasets that are thoroughly re-used in the literature: bias. For this, we designed experiments to study how our models’ use data, verifying how it exploits correct (based on medical algorithms), and spurious (based on artifacts introduced during image acquisition) correlations. Disturbingly, even in the absence of any clinical information regarding the lesion being diagnosed, our classification models presented much better performance than chance (even competing with specialists benchmarks), highly suggesting inflated performances.


A Data mining is the method of extracting useful information from various repositories such as Relational Database, Transaction database, spatial database, Temporal and Time-series database, Data Warehouses, World Wide Web. Various functionalities of Data mining include Characterization and Discrimination, Classification and prediction, Association Rule Mining, Cluster analysis, Evolutionary analysis. Association Rule mining is one of the most important techniques of Data Mining, that aims at extracting interesting relationships within the data. In this paper we study various Association Rule mining algorithms, also compare them by using synthetic data sets, and we provide the results obtained from the experimental analysis


Sign in / Sign up

Export Citation Format

Share Document