scholarly journals The enzymatic activity of inositol hexakisphosphate kinase controls circulating phosphate in mammals

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yusuke Moritoh ◽  
Shin-ichi Abe ◽  
Hiroki Akiyama ◽  
Akihiro Kobayashi ◽  
Ryokichi Koyama ◽  
...  

AbstractCirculating phosphate levels are tightly controlled within a narrow range in mammals. By using a novel small-molecule inhibitor, we show that the enzymatic activity of inositol hexakisphosphate kinases (IP6K) is essential for phosphate regulation in vivo. IP6K inhibition suppressed XPR1, a phosphate exporter, thereby decreasing cellular phosphate export, which resulted in increased intracellular ATP levels. The in vivo inhibition of IP6K decreased plasma phosphate levels without inhibiting gut intake or kidney reuptake of phosphate, demonstrating a pivotal role of IP6K-regulated cellular phosphate export on circulating phosphate levels. IP6K inhibition-induced decrease in intracellular inositol pyrophosphate, an enzymatic product of IP6K, was correlated with phosphate changes. Chronic IP6K inhibition alleviated hyperphosphataemia, increased kidney ATP, and improved kidney functions in chronic kidney disease rats. Our results demonstrate that the enzymatic activity of IP6K regulates circulating phosphate and intracellular ATP and suggest that IP6K inhibition is a potential novel treatment strategy against hyperphosphataemia.

2013 ◽  
Vol 210 (11) ◽  
pp. 2181-2190 ◽  
Author(s):  
Deanna A. Mele ◽  
Andres Salmeron ◽  
Srimoyee Ghosh ◽  
Hon-Ren Huang ◽  
Barbara M. Bryant ◽  
...  

Interleukin (IL) 17–producing T helper (TH17) cells have been selected through evolution for their ability to control fungal and bacterial infections. It is also firmly established that their aberrant generation and activation results in autoimmune conditions. Using a characterized potent and selective small molecule inhibitor, we show that the bromodomain and extra-terminal domain (BET) family of chromatin adaptors plays fundamental and selective roles in human and murine TH17 differentiation from naive CD4+ T cells, as well as in the activation of previously differentiated TH17 cells. We provide evidence that BET controls TH17 differentiation in a bromodomain-dependent manner through a mechanism that includes the direct regulation of multiple effector TH17-associated cytokines, including IL17, IL21, and GMCSF. We also demonstrate that BET family members Brd2 and Brd4 associate with the Il17 locus in TH17 cells, and that this association requires bromodomains. We recapitulate the critical role of BET bromodomains in TH17 differentiation in vivo and show that therapeutic dosing of the BET inhibitor is efficacious in mouse models of autoimmunity. Our results identify the BET family of proteins as a fundamental link between chromatin signaling and TH17 biology, and support the notion of BET inhibition as a point of therapeutic intervention in autoimmune conditions.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3609-3616 ◽  
Author(s):  
Evgeny Edovitsky ◽  
Immanuel Lerner ◽  
Eyal Zcharia ◽  
Tamar Peretz ◽  
Israel Vlodavsky ◽  
...  

Heparanase is an endoglycosidase that cleaves heparan sulfate (HS), the main polysaccharide of the basement membrane (BM). HS is responsible for BM integrity and barrier function. Hence, enzymatic degradation of HS in the vascular subendothelial BM is a prerequisite for extravasation of immune cells and plasma components during inflammation. Here, we demonstrate a highly coordinated local heparanase induction upon elicitation of delayed-type hypersensitivity (DTH) reaction in the mouse ear. By monitoring in vivo activation of luciferase gene driven by the heparanase promoter, we demonstrate activation of heparanase transcription at an early stage of DTH. We report that heparanase is produced locally by the endothelium at the site of DTH-associated inflammation. Key DTH mediators, tumor necrosis factor-α and interferon-γ, were found to induce heparanase in cultured endothelial cells. Endothelium emerges as an essential cellular source of heparanase enzymatic activity that, in turn, allows for remodeling of the vascular BM, increased vessel permeability, and extravasation of leukocytes and plasma proteins. In vivo administration of antiheparanase siRNA or an inhibitor of heparanase enzymatic activity effectively halted DTH inflammatory response. Collectively, our results highlight the decisive role of endothelial heparanase in DTH inflammation and its potential as a promising target for anti-inflammatory drug development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darja Flegar ◽  
Maša Filipović ◽  
Alan Šućur ◽  
Antonio Markotić ◽  
Nina Lukač ◽  
...  

Detailed characterization of medullary and extramedullary reservoirs of osteoclast progenitors (OCPs) is required to understand the pathophysiology of increased periarticular and systemic bone resorption in arthritis. In this study, we focused on identifying the OCP population specifically induced by arthritis and the role of circulatory OCPs in inflammatory bone loss. In addition, we determined the relevant chemokine axis responsible for their migration, and targeted the attraction signal to reduce bone resorption in murine collagen-induced arthritis (CIA). OCPs were expanded in periarticular as well as circulatory compartment of arthritic mice, particularly the CCR2hi subset. This subset demonstrated enhanced osteoclastogenic activity in arthritis, whereas its migratory potential was susceptible to CCR2 blockade in vitro. Intravascular compartment of the periarticular area contained increased frequency of OCPs with the ability to home to the arthritic bone, as demonstrated in vivo by intravascular staining and adoptive transfer of splenic LysMcre/Ai9 tdTomato-expressing cells. Simultaneously, CCL2 levels were increased locally and systemically in arthritic mice. Mouse cohorts were treated with the small-molecule inhibitor (SMI) of CCR2 alone or in combination with methotrexate (MTX). Preventive CCR2/CCL2 axis blockade in vivo reduced bone resorption and OCP frequency, whereas combining with MTX treatment also decreased disease clinical score, number of active osteoclasts, and OCP differentiation potential. In conclusion, our study characterized the functional properties of two distinct OCP subsets in CIA, based on their CCR2 expression levels, implying that the CCR2hi circulatory-like subset is specifically induced by arthritis. Signaling through the CCL2/CCR2 axis contributes to OCP homing in the inflamed joints and to their increased osteoclastogenic potential. Therefore, addition of CCL2/CCR2 blockade early in the course of arthritis is a promising approach to reduce bone pathology.


2006 ◽  
Vol 189 (2) ◽  
pp. 540-550 ◽  
Author(s):  
Rocío Canals ◽  
Natalia Jiménez ◽  
Silvia Vilches ◽  
Miguel Regué ◽  
Susana Merino ◽  
...  

ABSTRACT The mesophilic Aeromonas hydrophila AH-3 (serotype O34) strain shows two different UDP-hexose epimerases in its genome: GalE (EC 3.1.5.2) and Gne (EC 3.1.5.7). Similar homologues were detected in the different mesophilic Aeromonas strains tested. GalE shows only UDP-galactose 4-epimerase activity, while Gne is able to perform a dual activity (mainly UDP-N-acetyl galactosamine 4-epimerase and also UDP-galactose 4-epimerase). We studied the activities in vitro of both epimerases and also in vivo through the lipopolysaccharide (LPS) structure of A. hydrophila gne mutants, A. hydrophila galE mutants, A. hydrophila galE-gne double mutants, and independently complemented mutants with both genes. Furthermore, the enzymatic activity in vivo, which renders different LPS structures on the mentioned A. hydrophila mutant strains or the complemented mutants, allowed us to confirm a clear relationship between the virulence of these strains and the presence/absence of the O34 antigen LPS.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2016 ◽  
Vol 86 (3-4) ◽  
pp. 127-151 ◽  
Author(s):  
Zeshan Ali ◽  
Zhenbin Wang ◽  
Rai Muhammad Amir ◽  
Shoaib Younas ◽  
Asif Wali ◽  
...  

While the use of vinegar to fi ght against infections and other crucial conditions dates back to Hippocrates, recent research has found that vinegar consumption has a positive effect on biomarkers for diabetes, cancer, and heart diseases. Different types of vinegar have been used in the world during different time periods. Vinegar is produced by a fermentation process. Foods with a high content of carbohydrates are a good source of vinegar. Review of the results of different studies performed on vinegar components reveals that the daily use of these components has a healthy impact on the physiological and chemical structure of the human body. During the era of Hippocrates, people used vinegar as a medicine to treat wounds, which means that vinegar is one of the ancient foods used as folk medicine. The purpose of the current review paper is to provide a detailed summary of the outcome of previous studies emphasizing the role of vinegar in treatment of different diseases both in acute and chronic conditions, its in vivo mechanism and the active role of different bacteria.


Sign in / Sign up

Export Citation Format

Share Document