scholarly journals CD11b+ lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gentaro Izumi ◽  
Hideki Nakano ◽  
Keiko Nakano ◽  
Gregory S. Whitehead ◽  
Sara A. Grimm ◽  
...  

AbstractDendritic cells (DC) in the lung that induce Th17 differentiation remain incompletely understood, in part because conventional CD11b+ DCs (cDC2) are heterogeneous. Here, we report a population of cDCs that rapidly accumulates in lungs of mice following house dust extract inhalation. These cells are Ly-6C+, are developmentally and phenotypically similar to cDC2, and strongly promote Th17 differentiation ex vivo. Single cell RNA-sequencing (scRNA-Seq) of lung cDC2 indicates 5 distinct clusters. Pseudotime analysis of scRNA-Seq data and adoptive transfer experiments with purified cDC2 subpopulations suggest stepwise developmental progression of immature Ly-6C+Ly-6A/E+ cDC2 to mature Ly-6C–CD301b+ lung resident cDC2 lacking Ccr7 expression, which then further mature into CD200+ migratory cDC2 expressing Ccr7. Partially mature Ly-6C+Ly-6A/E–CD301b– cDC2, which express Il1b, promote Th17 differentiation. By contrast, CD200+ mature cDC2 strongly induce Th2, but not Th17, differentiation. Thus, Th17 and Th2 differentiation are promoted by lung cDC2 at distinct stages of maturation.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gen Zou ◽  
Jianzhang Wang ◽  
Xinxin Xu ◽  
Ping Xu ◽  
Libo Zhu ◽  
...  

Abstract Background Endometriosis is a refractory and recurrent disease and it affects nearly 10% of reproductive-aged women and 40% of infertile patients. The commonly accepted theory for endometriosis is retrograde menstruation where endometrial tissues invade into peritoneal cavity and fail to be cleared due to immune dysfunction. Therefore, the comprehensive understanding of immunologic microenvironment of peritoneal cavity deserves further investigation for the previous studies mainly focus on one or several immune cells. Results High-quality transcriptomes were from peritoneal fluid samples of patients with endometriosis and control, and firstly subjected to 10 × genomics single-cell RNA-sequencing. We acquired the single-cell transcriptomes of 10,280 cells from endometriosis sample and 7250 cells from control sample with an average of approximately 63,000 reads per cell. A comprehensive map of overall cells in peritoneal fluid was first exhibited. We unveiled the heterogeneity of immune cells and discovered new cell subtypes including T cell receptor positive (TCR+) macrophages, proliferating macrophages and natural killer dendritic cells in peritoneal fluid, which was further verified by double immunofluorescence staining and flow cytometry. Pseudo-time analysis showed that the response of macrophages to the menstrual debris might follow the certain differentiation trajectory after endometrial tissues invaded into the peritoneal cavity, that is, from antigen presentation to pro-inflammation, then to chemotaxis and phagocytosis. Our analyses also mirrored the dysfunctions of immune cells including decreased phagocytosis and cytotoxic activity and elevated pro-inflammatory and chemotactic effects in endometriosis. Conclusion TCR+ macrophages, proliferating macrophages and natural killer dendritic cells are firstly reported in human peritoneal fluid. Our results also revealed that immune dysfunction happens in peritoneal fluid of endometriosis, which may be responsible for the residues of invaded menstrual debris. It provided a large-scale and high-dimensional characterization of peritoneal microenvironment and offered a useful resource for future development of immunotherapy.


2022 ◽  
Author(s):  
Michael Valente ◽  
Nils Collinet ◽  
Thien-Phong Vu Manh ◽  
Karima Naciri ◽  
Gilles Bessou ◽  
...  

Plasmacytoid dendritic cells (pDC) were identified about 20 years ago, based on their unique ability to rapidly produce copious amounts of all subsets of type I and type III interferon (IFN-I/III) upon virus sensing, while being refractory to infection. Yet, the identity and physiological functions of pDC are still a matter of debate, in a large part due to their lack of specific expression of any single cell surface marker or gene that would allow to track them in tissues and to target them in vivo with high specificity and penetrance. Indeed, recent studies showed that previous methods that were used to identify or deplete pDC also targeted other cell types, including pDC-like cells and transitional DC (tDC) that were proposed to be responsible for all the antigen presentation ability previously attributed to steady state pDC. Hence, improving our understanding of the nature and in vivo choreography of pDC physiological functions requires the development of novel tools to unambiguously identify and track these cells, including in comparison to pDC-like cells and tDC. Here, we report successful generation of a pDC-reporter mouse model, by using an intersectional genetic strategy based on the unique co-expression of Siglech and Pacsin1 in pDC. This pDC-Tomato mouse strain allows specific ex vivo and in situ detection of pDC. Breeding them with Zbtb46GFP mice allowed side-by-side purification and transcriptional profiling by single cell RNA sequencing of bona fide pDC, pDC-like cells and tDC, in comparison to type 1 and 2 conventional DC (cDC1 and cDC2), both at steady state and during a viral infection, revealing diverging activation patterns of pDC-like cells and tDC. Finally, by breeding pDC-Tomato mice with Ifnb1EYFP mice, we determined the choreography of pDC recruitment to the micro-anatomical sites of viral replication in the spleen, with initially similar but later divergent behaviors of the pDC that engaged or not into IFN-I production. Our novel pDC-Tomato mouse model, and newly identified gene modules specific to combinations of DC types and activations states, will constitute valuable resources for a deeper understanding of the functional division of labor between DC types and its molecular regulation at homeostasis and during viral infections.


2015 ◽  
Vol 309 (10) ◽  
pp. L1208-L1218 ◽  
Author(s):  
Timothy P. Moran ◽  
Keiko Nakano ◽  
Gregory S. Whitehead ◽  
Seddon Y. Thomas ◽  
Donald N. Cook ◽  
...  

The induction of allergen-specific T helper 2 (Th2) cells by lung dendritic cells (DCs) is a critical step in allergic asthma development. Airway delivery of purified allergens or microbial products can promote Th2 priming by lung DCs, but how environmentally relevant quantities and combinations of these factors affect lung DC function is unclear. Here, we investigated the ability of house dust extract (HDE), which contains a mixture of environmental adjuvants, to prime Th2 responses against an innocuous inhaled antigen. Inhalational exposure to HDE conditioned lung conventional DCs, but not monocyte-derived DCs, to induce antigen-specific Th2 differentiation. Conditioning of DCs by HDE was independent of Toll-like receptor 4 signaling, indicating that environmental endotoxin is dispensable for programming DCs to induce Th2 responses. DCs directly treated with HDE underwent maturation but were poor stimulators of Th2 differentiation. In contrast, DCs treated with bronchoalveolar lavage fluid (BALF) from HDE-exposed mice induced robust Th2 differentiation. DC conditioning by BALF was independent of the proallergic cytokines IL-25, IL-33, and thymic stromal lymphopoietin. BALF treatment of DCs resulted in upregulation of CD80 but low expression of CD40, CD86, and IL-12p40, which was associated with Th2 induction. These findings support a model whereby environmental adjuvants in house dust indirectly program DCs to prime Th2 responses by triggering the release of endogenous soluble factor(s) by airway cells. Identifying these factors could lead to novel therapeutic targets for allergic asthma.


2019 ◽  
Vol 20 (9) ◽  
pp. 2316 ◽  
Author(s):  
Maria Moreno-Villanueva ◽  
Ye Zhang ◽  
Alan Feiveson ◽  
Brandon Mistretta ◽  
Yinghong Pan ◽  
...  

Detrimental health consequences from exposure to space radiation are a major concern for long-duration human exploration missions to the Moon or Mars. Cellular responses to radiation are expected to be heterogeneous for space radiation exposure, where only high-energy protons and other particles traverse a fraction of the cells. Therefore, assessing DNA damage and DNA damage response in individual cells is crucial in understanding the mechanisms by which cells respond to different particle types and energies in space. In this project, we identified a cell-specific signature for radiation response by using single-cell transcriptomics of human lymphocyte subpopulations. We investigated gene expression in individual human T lymphocytes 3 h after ex vivo exposure to 2-Gy gamma rays while using the single-cell sequencing technique (10X Genomics). In the process, RNA was isolated from ~700 irradiated and ~700 non-irradiated control cells, and then sequenced with ~50 k reads/cell. RNA in each of the cells was distinctively barcoded prior to extraction to allow for quantification for individual cells. Principal component and clustering analysis of the unique molecular identifier (UMI) counts classified the cells into three groups or sub-types, which correspond to CD4+, naïve, and CD8+/NK cells. Gene expression changes after radiation exposure were evaluated using negative binomial regression. On average, BBC3, PCNA, and other TP53 related genes that are known to respond to radiation in human T cells showed increased activation. While most of the TP53 responsive genes were upregulated in all groups of cells, the expressions of IRF1, STAT1, and BATF were only upregulated in the CD4+ and naïve groups, but were unchanged in the CD8+/NK group, which suggests that the interferon-gamma pathway does not respond to radiation in CD8+/NK cells. Thus, single-cell RNA sequencing technique was useful for simultaneously identifying the expression of a set of genes in individual cells and T lymphocyte subpopulation after gamma radiation exposure. The degree of dependence of UMI counts between pairs of upregulated genes was also evaluated to construct a similarity matrix for cluster analysis. The cluster analysis identified a group of TP53-responsive genes and a group of genes that are involved in the interferon gamma pathway, which demonstrate the potential of this method for identifying previously unknown groups of genes with similar expression patterns.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna M. Jermakowicz ◽  
Matthew J. Rybin ◽  
Robert K. Suter ◽  
Jann N. Sarkaria ◽  
Zane Zeier ◽  
...  

AbstractBromodomain and extraterminal domain (BET) proteins have emerged as therapeutic targets in multiple cancers, including the most common primary adult brain tumor glioblastoma (GBM). Although several BET inhibitors have entered clinical trials, few are brain penetrant. We have generated UM-002, a novel brain penetrant BET inhibitor that reduces GBM cell proliferation in vitro and in a human cerebral brain organoid model. Since UM-002 is more potent than other BET inhibitors, it could potentially be developed for GBM treatment. Furthermore, UM-002 treatment reduces the expression of cell-cycle related genes in vivo and reduces the expression of invasion related genes within the non-proliferative cells present in tumors as measured by single cell RNA-sequencing. These studies suggest that BET inhibition alters the transcriptional landscape of GBM tumors, which has implications for designing combination therapies. Importantly, they also provide an integrated dataset that combines in vitro and ex vivo studies with in vivo single-cell RNA-sequencing to characterize a novel BET inhibitor in GBM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Binyao Chen ◽  
Lei Zhu ◽  
Shizhao Yang ◽  
Wenru Su

Dendritic cells (DCs) play essential roles in innate and adaptive immunity and show high heterogeneity and intricate ontogeny. Advances in high-throughput sequencing technologies, particularly single-cell RNA sequencing (scRNA-seq), have improved the understanding of DC subsets. In this review, we discuss in detail the remarkable perspectives in DC reclassification and ontogeny as revealed by scRNA-seq. Moreover, the heterogeneity and multifunction of DCs during diseases as determined by scRNA-seq are described. Finally, we provide insights into the challenges and future trends in scRNA-seq technologies and DC research.


2019 ◽  
Vol 2 (6) ◽  
pp. e201900561 ◽  
Author(s):  
Dong Seong Cho ◽  
Bolim Lee ◽  
Jason D Doles

Obesity is a serious health concern and is associated with a reduced quality of life and a number of chronic diseases, including diabetes, heart disease, stroke, and cancer. With obesity rates on the rise worldwide, adipose tissue biology has become a top biomedical research priority. Despite steady growth in obesity-related research, more investigation into the basic biology of adipose tissue is needed to drive innovative solutions aiming to curtail the obesity epidemic. Adipose progenitor cells (APCs) play a central role in adipose tissue homeostasis and coordinate adipose tissue expansion and remodeling. Although APCs are well studied, defining and characterizing APC subsets remains ambiguous because of ill-defined cellular heterogeneity within this cellular compartment. In this study, we used single-cell RNA sequencing to create a cellular atlas of APC heterogeneity in mouse visceral adipose tissue. Our analysis identified two distinct populations of adipose tissue–derived stem cells (ASCs) and three distinct populations of preadipocytes (PAs). We identified novel cell surface markers that, when used in combination with traditional ASC and preadipocyte markers, could discriminate between these APC subpopulations by flow cytometry. Prospective isolation and molecular characterization of these APC subpopulations confirmed single-cell RNA sequencing gene expression signatures, and ex vivo culture revealed differential expansion/differentiation capabilities. Obese visceral adipose tissue featured relative expansion of less mature ASC and PA subpopulations, and expression analyses revealed major obesity-associated signaling alterations within each APC subpopulation. Taken together, our study highlights cellular and transcriptional heterogeneity within the APC pool, provides new tools to prospectively isolate and study these novel subpopulations, and underscores the importance of considering APC diversity when studying the etiology of obesity.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1194-1194
Author(s):  
Philipp Sergeev ◽  
Sadiksha Adhikari ◽  
Juho J. Miettinen ◽  
Maiju-Emilia Huppunen ◽  
Minna Suvela ◽  
...  

Abstract Introduction Melphalan flufenamide (melflufen), is a novel peptide-drug conjugate that targets aminopeptidases and selectively delivers alkylating agents in tumors. Melflufen was recently FDA approved for the treatment of relapsed/refractory multiple myeloma (MM) patients. Considering the challenges in treating this group of patients, and the availability of several new drugs for MM, information that can support treatment selection is urgently needed. To identify potential indicators of response and mechanism of resistance to melflufen, we applied a multiparametric drug sensitivity assay to MM patient samples ex vivo and analyzed the samples by single cell RNA sequencing (scRNAseq). Ex vivo drug testing identified MM samples that were distinctly sensitive or resistant to melflufen, while differential gene expression analysis revealed pathways associated with response. Methods Bone marrow (BM) aspirates from 24 MM patients were obtained after written informed consent following approved protocols in compliance with the Declaration of Helsinki. BM mononuclear cells from 12 newly diagnosed (ND) and 12 relapsed/refractory (RR) patients were used for multi-parametric flow cytometry-based drug sensitivity and resistance testing (DSRT) evaluation to melflufen and melphalan, and for scRNAseq. Based on the results from the DSRT tests and drug sensitivity scores (DSS), we divided the samples into three groups - high sensitivity (HS, DSS > 40 (melflufen) or DSS > 16 (melphalan)), intermediate sensitivity (IS, 31 ≤ DSS ≤ 40 (melflufen) or 10 ≤ DSS ≤ 16 (melphalan)), and low sensitivity (LS, DSS < 31 (melflufen) or DSS < 10 (melphalan)). To identify genes, responsible for the general sensitivity to melphalan-based drugs we conducted differential gene expression (DGE) analyses separately for melphalan and melflufen focusing on the plasma cell populations, comparing gene expression between HS and LS samples for both drugs ("HS vs. LS melphalan" and "HS vs. LS for melflufen", respectively). In addition, to explain the increased sensitivity of RR samples, we conducted the DGE analysis for ND vs. RR samples and searched for similarities between these three datasets. Results DSRT data indicated that samples from RRMM patients were significantly more sensitive to melflufen compared to samples from NDMM (Fig. 1A). In addition, we observed that samples with a gain of 1q (+1q) were more sensitive to melflufen while those with deletion of 13q (del13q) appeared to be less sensitive, although these results lacked significance (Fig. 1A). After separating the samples into different drug sensitivity groups (HS, IS, LS), DGE analysis showed significant downregulation of the drug efflux and multidrug resistance protein family member ABCB9 in the melflufen HS group opposed to the LS group (2.2-fold, p < 0.001). A similar pattern was detected for the melphalan HS vs. LS comparison suggesting that this alteration might be a common indicator of sensitivity to melphalan-based drugs. Furthermore, in the melflufen HS group we observed downregulation of the matrix metallopeptidase inhibitors TIMP1 and TIMP2 (3-fold and 1.6-fold, p < 0.001, respectively), and cathepsin inhibitors CST3 and CSTB (3.2-fold and 1.3-fold, p < 0.001, respectively) (Fig. 1B). This effect was observed in both "ND vs. RR" and "HS vs. LS for melflufen" comparisons, but not for melphalan, suggesting that these changes are associated with disease progression and specific indicators of sensitivity to melflufen. Moreover, gene set enrichment analysis (GSEA) showed activation of pathways related to protein synthesis, as well as amino acid starvation for malignant and normal cell populations in the HS group. Conclusion In summary, our results indicate that melflufen is more active in RRMM compared to NDMM. In addition, samples from MM patients with +1q, which is considered an indicator of high-risk disease, tended to be more sensitive to melflufen. Based on differential GSEA and pathway enrichment, several synergizing mechanisms could potentially explain the higher sensitivity to melflufen, such as decreased drug efflux and increased drug uptake. Although these results indicate potential indicators of response and mechanisms of drug efficacy, further validation of these findings is required using data from melflufen treated patients. Figure 1 Figure 1. Disclosures Slipicevic: Oncopeptides AB: Current Employment. Nupponen: Oncopeptides AB: Consultancy. Lehmann: Oncopeptides AB: Current Employment. Heckman: Orion Pharma: Research Funding; Oncopeptides: Consultancy, Research Funding; Novartis: Research Funding; Celgene/BMS: Research Funding; Kronos Bio, Inc.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document