scholarly journals Cardiovascular deconditioning during long-term spaceflight through multiscale modeling

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Caterina Gallo ◽  
Luca Ridolfi ◽  
Stefania Scarsoglio

Abstract Human spaceflight has been fascinating man for centuries, representing the intangible need to explore the unknown, challenge new frontiers, advance technology, and push scientific boundaries further. A key area of importance is cardiovascular deconditioning, that is, the collection of hemodynamic changes—from blood volume shift and reduction to altered cardiac function—induced by sustained presence in microgravity. A thorough grasp of the 0G adjustment point per se is important from a physiological viewpoint and fundamental for astronauts’ safety and physical capability on long spaceflights. However, hemodynamic details of cardiovascular deconditioning are incomplete, inconsistent, and poorly measured to date; thus a computational approach can be quite valuable. We present a validated 1D–0D multiscale model to study the cardiovascular response to long-term 0G spaceflight in comparison to the 1G supine reference condition. Cardiac work, oxygen consumption, and contractility indexes, as well as central mean and pulse pressures were reduced, augmenting the cardiac deconditioning scenario. Exercise tolerance of a spaceflight traveler was found to be comparable to an untrained person with a sedentary lifestyle. At the capillary–venous level significant waveform alterations were observed which can modify the regular perfusion and average nutrient supply at the cellular level. The present study suggests special attention should be paid to future long spaceflights which demand prompt physical capacity at the time of restoration of partial gravity (e.g., Moon/Mars landing). Since spaceflight deconditioning has features similar to accelerated aging understanding deconditioning mechanisms in microgravity are also relevant to the understanding of aging physiology on the Earth.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Juopperi Samuli ◽  
Sund Reijo ◽  
Rikkonen Toni ◽  
Kröger Heikki ◽  
Sirola Joonas

Abstract Background Good physical capability is an important part of healthy biological ageing. Several factors influencing physical capability have previously been reported. Long-term reports on physical capability and the onset of clinical disorders and chronic diseases are lacking. Decrease in physical capacity has been shown to increase mortality. This study focuses on the prevalence of chronic diseases. The primary objective of the study was to reveal the association between physical capability and morbidity. Secondary objectives included the validity of self-reported physical capability and the association between baseline physical capability and mortality. Methods The OSTPRE (Kuopio Osteoporosis Risk Factor and Prevention Study) prospective cohort involved all women aged 47–56 years residing in the Kuopio Province, Finland in 1989. Follow-up questionnaires were mailed at five-year intervals. Physical capability questions were first presented in 1994. From these women, we included only completely physically capable subjects at our baseline, in 1994. Physical capability was evaluated with five scale self-reports at baseline and in 2014 as follows: completely physically capable, able to walk but not run, can walk up to 1000 m, can walk up to 100 m and temporarily severely incapable. The prevalences of selected chronic diseases, with a minimum prevalence of 10% in 2014, were compared with the change in self-reported physical capability. Additionally, associations between long-term mortality and baseline physical capability of the whole 1994 study population sample were examined with logistic regression. The correlation of self-reported physical capability with functional tests was studied cross-sectionally at the baseline for a random subsample. Results Our study population consisted of 6219 Finnish women with a mean baseline age of 57.0 years. Self-reported physical capability showed statistically significant correlation with functional tests. Cardiovascular diseases and musculoskeletal disorders show the greatest correlation with decrease of physical capability. Prevalence of hypertension increased from 48.7% in the full physical capability group to 74.5% in the “able to walk up to 100 metres” group (p < 0.001). Rheumatoid arthritis showed a similar increase from 2.1 to 7.4% between these groups. Higher baseline body mass index (BMI) decreases long-term capability (P < 0.001). Women reporting full physical capability at baseline had a mortality rate of 15.1%, in comparison to 48.5% in women within the “able to walk up to 100 m” group (p = 0.357). Mortality increased steadily with worsening baseline physical capability. Conclusions The results of this study show that chronic diseases, particularly cardiovascular and musculoskeletal disorders, correlate with faster degradation of physical capability in the elderly. Similar results are shown for increase in BMI. We also demonstrate that the risk of mortality over a 20-year period is higher in individuals with poor baseline physical capability.


2012 ◽  
Vol 182-183 ◽  
pp. 76-79 ◽  
Author(s):  
Lei Lei Song ◽  
Quan Rong Liu ◽  
Jia Lu Li

In this paper, carbon fiber reinforced resin matrix composites were produced by stacking eight pieces of carbon fiber woven plain fabric and subjected to accelerated ageing. Accelerated ageing was carried out in oven at 180°C for three different time intervals (60 hours, 120 hours and 180 hours). The influence of different ageing time intervals at 180°C on tensile properties of laminated composites was examined, compared with the composites without aging. The appearance and damage forms of these laminated composites were investigated. The results revealed that the tensile strength of the laminates declined significantly after long term accelerated aging at 180°C. The average tensile strengths of composite samples aged 60 hours, 120 hours, and 180 hours period of time at 180°C are 80.36%, 79.82%, 76.57% of average tensile strength of composite samples without aging, respectively. The high temperature accelerated aging makes the resin macromolecular structure in the composites changed, and then the adhesive force between fiber bundles and resin declines rapidly which result in the tensile strength of composites aged decrease. This research provides a useful reference for long term durability of laminated/epoxy resin composites.


2021 ◽  
Vol 28 (6) ◽  
pp. 1973-1979
Author(s):  
Cong Wang ◽  
Renjie Cao ◽  
Youping Tu ◽  
Xin Ai ◽  
Ying Zhang ◽  
...  

2013 ◽  
Vol 1518 ◽  
pp. 73-78 ◽  
Author(s):  
Shirley K. Fong ◽  
Brian L. Metcalfe ◽  
Randall D. Scheele ◽  
Denis M. Strachan

ABSTRACTA calcium phosphate ceramic waste-form has been developed at AWE for the immobilisation of chloride containing wastes arising from the pyrochemical reprocessing of plutonium. In order to determine the long term durability of the waste-form, aging trials have been carried out at PNNL. Ceramics were prepared using Pu-239 and -238, these were characterised by PXRD at regular intervals and Single Pass Flow Through (SPFT) tests after approximately 5 yrs.While XRD indicated some loss of crystallinity in the Pu-238 samples after exposure to 2.8 x 1018 α decays, SPFT tests indicated that accelerated aging had not had a detrimental effect on the durability of Pu-238 samples compared to Pu-239 waste-forms.


2019 ◽  
Vol 14 (2) ◽  
pp. 45-59 ◽  
Author(s):  
Halet Almila Arda Buyuktaskin ◽  
Mehmet Serkan Yatagan ◽  
Gulseren Erol Soyoz ◽  
Leyla Tanacan ◽  
Morvarid Dilmaghani

Although timber was used extensively as a structural material for traditional buildings in Turkey in the past, usage of structural timber decreased significantly over time and timber has been largely replaced by other materials. As timber is a natural, durable and sustainable material, it would be desirable to re-introduce timber structural elements to contemporary construction in a form that is appealing to industry. Timber-glass composite structural elements are potentially a good candidate for this purpose. To that end, a series of tests were conducted on load-bearing timber-glass composites in order to understand the long–term structural performance of the composite material under atmospheric conditions; to decrease the recurring cost of repair and maintenance; and to minimize the exhaustion of raw materials and energy. In this paper, the first part of this experimental work is presented, which focuses on the durability of timber-glass composite under the effects of accelerated aging, carried out on small-sized timber-glass composite specimens. Accelerated aging effects were observed under wetting-drying, freezing-thawing, UV effects, resistance to acids and high temperature. The mechanical strength of the timber-glass composite specimens before and after the effect of accelerated aging was measured by adhesion and shear strength tests and a comparative analysis of the results was carried out. The results of the experiments indicate that timber-glass composite is suitable to be used under protection from environmental conditions.


2018 ◽  
Vol 5 (12) ◽  
pp. 180336
Author(s):  
Michele Sanguanini ◽  
Antonino Cattaneo

The regulation of mRNA translation at the level of the synapse is believed to be fundamental in memory and learning at the cellular level. The family of cytoplasmic polyadenylation element binding (CPEB) proteins emerged as an important RNA-binding protein family during development and in adult neurons. Drosophila Orb2 (homologue of mouse CPEB3 protein and of the neural isoform of Aplysia CPEB) has been found to be involved in the translation of plasticity-dependent mRNAs and has been associated with long-term memory. Orb2 protein presents two main isoforms, Orb2A and Orb2B, which form an activity-induced amyloid-like functional aggregate, thought to be the translation-inducing state of the RNA-binding protein. Here we present a first two-states continuous differential model for Orb2A–Orb2B aggregation. This model provides new working hypotheses for studying the role of prion-like CPEB proteins in long-term synaptic plasticity. Moreover, this model can be used as a first step to integrate translation- and protein aggregation-dependent phenomena in synaptic facilitation rules.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-56 ◽  
Author(s):  
Arooj Rashid ◽  
Jawad Saleem ◽  
Muhammad Amin ◽  
Sahibzada Muhammad Ali

Multiple environmental stresses produce complex phenomena of aging in polymeric insulators. The main aim of this research is to investigate the improved aging characteristics of silica (SiO2)/alumina trihydrate (ATH) hybrid samples (HSs) in high-temperature vulcanized rubber. For this purpose, three HSs comprising 20% micro-ATH with 2% nano-SiO2 (S2), 4% nano-SiO2 (S4), 6% nano-SiO2 (S6) along with sample-virgin (SV) are subjected to long-term accelerated aging of 9000 h. A special aging chamber is fabricated for the aging process of samples. The aging characteristics of these samples are investigated by measuring leakage current (LC) and hydrophobicity classification (HC) after every weathering cycle. Similarly, Fourier transform infrared (FTIR) spectroscopy is performed to observe the important structural changes over the entire aging time. The dielectric strength of AC is also performed after every 1000 h of aging. Tracking and erosion resistance and mechanical properties are also investigated before and after aging. From the critical investigation, it is observed that HSs possess improved results in all the conducted tests. S2 has the lowest LC and HC values throughout the aging time. Similarly, S6 described the highest breakdown strength at the end of the accelerated aging. In the case of FTIR, it is analyzed that the important wave numbers remain intact for all the HSs in the accelerated aging environment. The loss percentage in the wave number for SV is higher, compared to the HSs. After performing the tracking and erosion resistance test, HSs have superior performance. For some of the mechanical properties, HSs showed improved values. Thus, from the experimental analysis, it is deducted that the sample S2 offers the highest resistance to the aging conditions, compared to the SV and other HSs.


Author(s):  
Winnie M.C. van den Boogaard ◽  
Marry M. van den Heuvel-Eibrink ◽  
Jan H.J. Hoeijmakers ◽  
Wilbert P. Vermeij

Dietary restriction (DR) is the most successful nutritional intervention for extending life span and preserving health in numerous species. Reducing food intake triggers a protective response that shifts energy resources from growth to maintenance and resilience mechanisms. This so-called survival response has been shown to particularly increase life and health span and decrease DNA damage in DNA repair–deficient mice exhibiting accelerated aging. Accumulation of DNA damage is the main cause of aging, but also of cancer. Moreover, radiotherapies and most chemotherapies are based on damaging DNA, consistent with their ability to induce toxicity and accelerate aging. Since fasting and DR decrease DNA damage and its effects, nutritional preconditioning holds promise for improving (cancer) therapy and preventing short- and long-term side effects of anticancer treatments. This review provides an overview of the link between aging and cancer, highlights important preclinical studies applying such nutritional preconditioning, and summarizes the first clinical trials implementing nutritional preconditioning in cancer treatment. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2012 ◽  
Vol 1466 ◽  
Author(s):  
Juan S. Ordonez ◽  
Christian Boehler ◽  
Martin Schuettler ◽  
Thomas Stieglitz

ABSTRACTDelamination between thin-film metal and substrate is a major cause of failure in polyimide based neural microelectrode arrays. Chemical adhesion is the only way to establish a long-term bond that will allow two materials to stick to each other even in a wet environment, given that the materials do not deteriorate in the presence of water. This study assesses, by means of peel and shear tests, a long-term quantitative and comparative study of the adhesion of polyimide to various metallic and other inorganic layers of interest. Polyimide (BPDA-PPD) was cured on the layers, which involve platinum, gold and tungsten-titanium as commonly used implant metals and diamond-like carbon (DLC), silicon carbide (SiC), silicon dioxide (SiO2) and silicone nitride (SiN) as potential adhesion promoters to be used later as intermediate layers between metal and polyimide. The adhesion was observed over one year under accelerated-aging conditions by storing the specimens in 60°C saline (corresponding to 40000 hrs at 37°C). Only silicon carbide and amorphous carbon showed almost unaffected adhesion to polyimide over the testing period. No water intrusion at the interface was observed and the strong bond is almost fully maintained.


Sign in / Sign up

Export Citation Format

Share Document