scholarly journals Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Julia Baaske ◽  
Patrick Gonschorek ◽  
Raphael Engesser ◽  
Alazne Dominguez-Monedero ◽  
Katrin Raute ◽  
...  
2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Xue Deng ◽  
Xing Sun ◽  
Wenkai Yue ◽  
Yongjia Duan ◽  
Rirong Hu ◽  
...  

The ESCRT protein CHMP2B and the RNA-binding protein TDP-43 are both associated with ALS and FTD. The pathogenicity of CHMP2B has mainly been considered a consequence of autophagy–endolysosomal dysfunction, whereas protein inclusions containing phosphorylated TDP-43 are a pathological hallmark of ALS and FTD. Intriguingly, TDP-43 pathology has not been associated with the FTD-causing CHMP2BIntron5 mutation. In this study, we identify CHMP2B as a modifier of TDP-43–mediated neurodegeneration in a Drosophila screen. Down-regulation of CHMP2B reduces TDP-43 phosphorylation and toxicity in flies and mammalian cells. Surprisingly, although CHMP2BIntron5 causes dramatic autophagy dysfunction, disturbance of autophagy does not alter TDP-43 phosphorylation levels. Instead, we find that inhibition of CK1, but not TTBK1/2 (all of which are kinases phosphorylating TDP-43), abolishes the modifying effect of CHMP2B on TDP-43 phosphorylation. Finally, we uncover that CHMP2B modulates CK1 protein levels by negatively regulating ubiquitination and the proteasome-mediated turnover of CK1. Together, our findings propose an autophagy-independent role and mechanism of CHMP2B in regulating CK1 abundance and TDP-43 phosphorylation.


2001 ◽  
Vol 360 (3) ◽  
pp. 707-715 ◽  
Author(s):  
Trevor R. PETTITT ◽  
Mark McDERMOTT ◽  
Khalid M. SAQIB ◽  
Neil SHIMWELL ◽  
Michael J. O. WAKELAM

Mammalian cells contain different phospholipase D enzymes (PLDs) whose distinct physiological roles are poorly understood and whose products have not been characterized. The development of porcine aortic endothelial (PAE) cell lines able to overexpress PLD-1b or −2a under the control of an inducible promoter has enabled us to characterize both the substrate specificity and the phosphatidic acid (PtdOH) product of these enzymes under controlled conditions. Liquid chromatography–MS analysis showed that PLD1b- and PLD2a-transfected PAE cells, as well as COS7 and Rat1 cells, generate similar PtdOH and, in the presence of butan-1-ol, phosphatidylbutanol (PtdBut) profiles, enriched in mono- and di-unsaturated species, in particular 16:0/18:1. Although PtdBut mass increased, the species profile did not change in cells stimulated with ATP or PMA. Overexpression of PLD made little difference to basal or stimulated PtdBut formation, indicating that activity is tightly regulated in vivo and that factors other than just PLD protein levels limit hydrolytic function. In vitro assays using PLD-enriched lysates showed that the enzyme could utilize both phosphatidylcholine and, much less efficiently, phosphatidylethanolamine, with slight selectivity towards mono- and di-unsaturated species. Phosphatidylinositol was not a substrate. Thus PLD1b and PLD2a hydrolyse a structurally similar substrate pool to generate an identical PtdOH product enriched in mono- and di-unsaturated species that we propose to function as the intracellular messenger forms of this lipid.


2021 ◽  
Vol 22 (6) ◽  
pp. 2941
Author(s):  
Marisa Pereira ◽  
Diana R. Ribeiro ◽  
Miguel M. Pinheiro ◽  
Margarida Ferreira ◽  
Stefanie Kellner ◽  
...  

Transfer RNA (tRNA) molecules contain various post-transcriptional modifications that are crucial for tRNA stability, translation efficiency, and fidelity. Besides their canonical roles in translation, tRNAs also originate tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs with regulatory functions ranging from translation regulation to gene expression control and cellular stress response. Recent evidence indicates that tsRNAs are also modified, however, the impact of tRNA epitranscriptome deregulation on tsRNAs generation is only now beginning to be uncovered. The 5-methyluridine (m5U) modification at position 54 of cytosolic tRNAs is one of the most common and conserved tRNA modifications among species. The tRNA methyltransferase TRMT2A catalyzes this modification, but its biological role remains mostly unexplored. Here, we show that TRMT2A knockdown in human cells induces m5U54 tRNA hypomodification and tsRNA formation. More specifically, m5U54 hypomodification is followed by overexpression of the ribonuclease angiogenin (ANG) that cleaves tRNAs near the anticodon, resulting in accumulation of 5′tRNA-derived stress-induced RNAs (5′tiRNAs), namely 5′tiRNA-GlyGCC and 5′tiRNA-GluCTC, among others. Additionally, transcriptomic analysis confirms that down-regulation of TRMT2A and consequently m5U54 hypomodification impacts the cellular stress response and RNA stability, which is often correlated with tiRNA generation. Accordingly, exposure to oxidative stress conditions induces TRMT2A down-regulation and tiRNA formation in mammalian cells. These results establish a link between tRNA hypomethylation and ANG-dependent tsRNAs formation and unravel m5U54 as a tRNA cleavage protective mark.


2007 ◽  
Vol 88 (10) ◽  
pp. 2627-2635 ◽  
Author(s):  
Alexey A. Matskevich ◽  
Karin Moelling

In mammals the interferon (IFN) system is a central innate antiviral defence mechanism, while the involvement of RNA interference (RNAi) in antiviral response against RNA viruses is uncertain. Here, we tested whether RNAi is involved in the antiviral response in mammalian cells. To investigate the role of RNAi in influenza A virus-infected cells in the absence of IFN, we used Vero cells that lack IFN-α and IFN-β genes. Our results demonstrate that knockdown of a key RNAi component, Dicer, led to a modest increase of virus production and accelerated apoptosis of influenza A virus-infected cells. These effects were much weaker in the presence of IFN. The results also show that in both Vero cells and the IFN-producing alveolar epithelial A549 cell line influenza A virus targets Dicer at mRNA and protein levels. Thus, RNAi is involved in antiviral response, and Dicer is important for protection against influenza A virus infection.


2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Author(s):  
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.


1994 ◽  
Vol 14 (5) ◽  
pp. 3085-3093
Author(s):  
L A Chandler ◽  
C P Ehretsmann ◽  
S Bourgeois

Although loss of cell surface fibronectin (FN) is a hallmark of many oncogenically transformed cells, the mechanisms responsible for this phenomenon remain poorly understood. The present study utilized the nontumorigenic human osteosarcoma cell line TE-85 to investigate the effects of induced Ha-ras oncogene expression on FN biosynthesis. TE-85 cells were stably transfected with metallothionein-Ha-ras fusion genes, and the effects of metal-induced ras expression on FN biosynthesis were determined. Induction of the ras oncogene, but not proto-oncogene, was accompanied by a decrease in total FN mRNA and protein levels. Transfection experiments indicated that these oncogene effects were not due to reduced FN promoter activity, suggesting that a posttranscriptional mechanism was involved. The most common mechanism of posttranscriptional regulation affects cytoplasmic mRNA stability. However, in this study the down-regulation of FN was identified as a nuclear event. A component of the ras effect was due to a mechanism affecting accumulation of processed nuclear FN RNA. Mechanisms that would generate such an effect include altered RNA processing and altered stability of the processed message in the nucleus. There was no effect of ras on FN mRNA poly(A) tail length or site of polyadenylation. There was also no evidence for altered splicing at the ED-B domain of FN mRNA. This demonstration of nuclear posttranscriptional down-regulation of FN by the Ha-ras oncogene identifies a new level at which ras oncoproteins can regulate gene expression and thus contribute to development of the malignant phenotype.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2857-2869 ◽  
Author(s):  
Francesc X. Donadeu ◽  
Cristina L. Esteves ◽  
Lynsey K. Doyle ◽  
Catherine A. Walker ◽  
Stephanie N. Schauer ◽  
...  

Previous studies showed that under certain conditions LH can stimulate not only adenylate cyclase (AC) but also phospholipase Cβ (PLCβ) signaling in target cells; however, the physiological involvement of PLCβ in LH-induced ovarian follicular cell differentiation has not been determined. To address this, ex vivo expression analyses and specific PLCβ targeting were performed in primary bovine granulosa cells. Expression analyses in cells from small (2.0–5.9 mm), medium (6.0–9.9 mm), and ovulatory-size (10.0–13.9 mm) follicles revealed an increase in mRNA and protein levels of heterotrimeric G protein subunits-αs, -αq, -α11, and -αi2 in ovulatory-size follicles, simultaneous with a substantial increase in LH receptor expression. Among the four known PLCβ isoforms, PLCβ3 (PLCB3) was specifically up-regulated in cells from ovulatory-size follicles, in association with a predominantly cytoplasmic location of PLCB3 in these cells and a significant inositol phosphate response to LH stimulation. Furthermore, RNA interference-mediated PLCB3 down-regulation reduced the ability of LH to induce hallmark differentiation responses of granulosa cells, namely transcriptional up-regulation of prostaglandin-endoperoxide synthase 2 and down-regulation of both aromatase expression and estradiol production. Responses to the AC agonist, forskolin, however, were not affected. In addition, PLCB3 down-regulation did not alter cAMP responses to LH in granulosa cells, ruling out a primary involvement of AC in mediating the effects of PLCB3. In summary, we provide evidence of a physiological involvement of PLCβ signaling in ovulatory-size follicles and specifically identify PLCB3 as a mediator of LH-induced differentiation responses of granulosa cells.


2013 ◽  
Vol 45 (4) ◽  
pp. 127-137 ◽  
Author(s):  
Lingchen Fu ◽  
Michael S. Kilberg

Mammalian cells respond to amino acid deprivation through multiple signaling pathways referred to as the amino acid response (AAR). Transcription factors mediate the AAR after their activation by several mechanisms; examples include translational control (activating transcription factor 4, ATF4), phosphorylation (p-cJUN), and transcriptional control (ATF3). ATF4 induces ATF3 transcription through a promoter-localized C/EBP-ATF response element (CARE). The present report characterizes an ATF/CRE site upstream of the CARE that also contributes to AAR-induced ATF3 transcription. ATF4 binds to the ATF/CRE and CARE sequences and both are required for a maximal response to ATF4 induction. ATF3, which antagonizes ATF4 and represses its own gene, also exhibited binding activity to the ATF/CRE and CARE sequences. The AAR resulted in elevated total cJUN and p-cJUN protein levels and both forms exhibited binding activity to the ATF/CRE and CARE ATF3 sequences. Knockdown of AAR-enhanced cJUN expression blocked induction of the ATF3 gene and mutation of either the ATF/CRE or the CARE site prevented the cJUN-dependent increase in ATF3-driven luciferase activity. The results indicate that both increased cJUN and the cis-acting ATF/CRE sequence within the ATF3 promoter contribute to the transcriptional activation of the gene during the AAR.


1996 ◽  
Vol 319 (1) ◽  
pp. 307-313 ◽  
Author(s):  
Takeshi ASANO ◽  
Taeha AN ◽  
Janice MAYES ◽  
Leonard A. ZWELLING ◽  
Eugenie S. KLEINERMAN

We have investigated the possibility of overcoming the resistance of human brain tumour cells (HBT20) to etoposide by transferring the normal human topoisomerase IIα (H-topo II) gene into these cells. H-topo II in a mammalian expression vector containing a glucocorticoid-inducible mouse mammary tumour virus (MMTV) promoter was transfected into etoposide-resistant HBT20 cells (HBT20-hTOP2MAM). HBT20 cells transfected with pMAMneo vector alone served as control cells (HBT20-MAM). These were stable transfections. Following a 2 h dexamethasone treatment, H-topo II mRNA expression, protein production, etoposide-induced DNA-protein complex formation and sensitivity to etoposide were increased in HBT20-hTOP2MAM cells compared with control HBT20-MAM cells and with HBT20-hTOP2MAM cells not treated with dexamethasone. However, mRNA and protein levels and cell sensitivity returned to baseline when incubation with dexamethasone was continued for 24 h. This decrease from the 2 h values could not be explained by a loss of the MMTV promoter response to dexamethasone. (H-topo IIα promoter)-(chloramphenicol acetyltransferase) constructs containing regions -559–0 and -2400–0 were significantly down-regulated in HBT20-hTOP2MAM cells treated for 24 h with dexamethasone compared with dexamethasone-treated control cells. H-topo II mRNA stability after 24 h of dexamethasone treatment was not altered compared with that in control cells. Our data indicate that the exogenously produced H-topo II may have a negative-feedback effect on the endogenous topoisomerase II promoter, causing down-regulation of the endogenous gene.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Wenwen Chen ◽  
Wei Wang ◽  
Xiaoxia Sun ◽  
Shanshan Xie ◽  
Xiaoyang Xu ◽  
...  

Abstract Cell migration plays pivotal roles in many biological processes; however, its underlying mechanism remains unclear. Here, we find that NudC-like protein 2 (NudCL2), a cochaperone of heat shock protein 90 (Hsp90), modulates cell migration by stabilizing both myosin-9 and lissencephaly protein 1 (LIS1). Either knockdown or knockout of NudCL2 significantly increases single-cell migration, but has no significant effect on collective cell migration. Immunoprecipitation–mass spectrometry and western blotting analyses reveal that NudCL2 binds to myosin-9 in mammalian cells. Depletion of NudCL2 not only decreases myosin-9 protein levels, but also results in actin disorganization. Ectopic expression of myosin-9 efficiently reverses defects in actin disorganization and single-cell migration in cells depleted of NudCL2. Interestingly, knockdown of myosin-9 increases both single and collective cell migration. Depletion of LIS1, a NudCL2 client protein, suppresses both single and collective cell migration, which exhibits the opposite effect compared with myosin-9 depletion. Co-depletion of myosin-9 and LIS1 promotes single-cell migration, resembling the phenotype caused by NudCL2 depletion. Furthermore, inhibition of Hsp90 ATPase activity also reduces the Hsp90-interacting protein myosin-9 stability and increases single-cell migration. Forced expression of Hsp90 efficiently reverses myosin-9 protein instability and the defects induced by NudCL2 depletion, but not vice versa. Taken together, these data suggest that NudCL2 plays an important role in the precise regulation of cell migration by stabilizing both myosin-9 and LIS1 via Hsp90 pathway.


Sign in / Sign up

Export Citation Format

Share Document