scholarly journals The Human Papillomavirus (HPV) E1 protein regulates the expression of cellular genes involved in immune response

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Leonardo Josué Castro-Muñoz ◽  
Joaquín Manzo-Merino ◽  
J. Omar Muñoz-Bello ◽  
Leslie Olmedo-Nieva ◽  
Alberto Cedro-Tanda ◽  
...  

Abstract The Human Papillomavirus (HPV) E1 protein is the only viral protein with enzymatic activity. The main known function of this protein is the regulation of the viral DNA replication. Nevertheless, it has been demonstrated that the ablation of HPV18 E1 mRNA in HeLa cells promotes a deregulation of several genes, particularly those involved in host defense mechanisms against viral infections; however, the specific contribution of E1 protein in HPV-independent context has not been studied. The aim of this work was to determine the effect of the HPV E1 protein in the regulation of cellular gene expression profiles evaluated through RNA-seq. We found that E1 proteins from HPV16 and 18 induced an overexpression of different set of genes associated with proliferation and differentiation processes, as well as downregulation of immune response genes, including IFNβ1 and IFNλ1 and Interferon-stimulated gene (ISG), which are important components involved in the antiviral immune response. Together, our results indicate that HR-(High-Risk) and LR-(Low-Risk) HPV E1 proteins play an important role in inhibiting the anti-viral immune response.

2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Wang

Viral infection triggers insect immune response, including RNA interference, apoptosis and autophagy, and profoundly changes the gene expression profiles in infected cells. Although intracellular degradation is crucial for restricting viral infection, intercellular communication is required to mount a robust systemic immune response. This review focuses on recent advances in understanding the intercellular communications in insect antiviral immunity, including protein-based and virus-derived RNA based cell-cell communications, with emphasis on the signaling pathway that induces the production of the potential cytokines. The prospects and challenges of future work are also discussed.


2021 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Hana Votavova ◽  
Zuzana Urbanova ◽  
David Kundrat ◽  
Michaela Dostalova Merkerova ◽  
Martin Vostry ◽  
...  

Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.


2003 ◽  
Vol 77 (9) ◽  
pp. 5464-5474 ◽  
Author(s):  
Katja Nilges ◽  
Hanni Höhn ◽  
Henryk Pilch ◽  
Claudia Neukirch ◽  
Kirsten Freitag ◽  
...  

ABSTRACT Human papillomavirus type 16 (HPV16) E6 and E7 oncoproteins are required for cellular transformation and represent candidate targets for HPV-specific and major histocompatibility complex class I-restricted CD8+-T-cell responses in patients with cervical cancer. Recent evidence suggests that cross-reactivity represents the inherent nature of the T-cell repertoire. We identified HLA-A2 binding HPV16 E7 variant peptides from human, bacterial, or viral origin which are able to drive CD8+-T-cell responses directed against wild-type HPV16 E7 amino acid 11 to 19/20 (E711-19/20) epitope YMLDLQPET(T) in vitro. CD8+ T cells reacting to the HLA-A2-presented peptide from HPV16 E711-19(20) recognized also the HLA-A2 binding peptide TMLDIQPED (amino acids 52 to 60) from the human coronavirus OC43 NS2 gene product. Establishment of coronavirus NS2-specific, HLA-A2-restricted CD8+-T-cell clones and ex vivo analysis of HPV16 E7 specific T cells obtained by HLA-A2 tetramer-guided sorting from PBL or tumor-infiltrating lymphocytes obtained from patients with cervical cancer showed that cross-reactivity with HPV16 E711-19(20) and coronavirus NS252-60 represents a common feature of this antiviral immune response defined by cytokine production. Zero of 10 patients with carcinoma in situ neoplasia and 3 of 18 patients with cervical cancer showed ≥0.1% HPV16 E7-reactive T cells in CD8+ peripheral blood lymphocytes. In vivo priming with HPV16 was confirmed in patients with cervical cancer or preinvasive HPV16-positive lesions using HLA-A2 tetramer complexes loaded with the E6-derived epitope KLPQLCTEL. In contrast, we could not detect E6-reactive T cells in healthy individuals. These data imply that the measurement of the HPV16 E711-19(20) CD8+-T-cell response may reflect cross-reactivity with a common pathogen and that variant peptides may be employed to drive an effective cellular immune response against HPV.


2019 ◽  
Vol 164 (7) ◽  
pp. 1815-1827 ◽  
Author(s):  
Alma Mariana Fuentes-González ◽  
J. Omar Muñoz-Bello ◽  
Joaquín Manzo-Merino ◽  
Adriana Contreras-Paredes ◽  
Abraham Pedroza-Torres ◽  
...  

2015 ◽  
Vol 139 (11) ◽  
pp. 1373-1378 ◽  
Author(s):  
Nicole V. J. Anayannis ◽  
Nicolas F. Schlecht ◽  
Thomas J. Belbin

Context Growing evidence suggests that as many as half of all oropharyngeal squamous cell carcinomas (OPSCCs) harbor human papillomavirus (HPV) infections. Despite being more advanced at diagnosis, HPV-positive OPSCCs are associated with a better response to therapy and longer patient survival than HPV-negative OPSCCs. Human papillomavirus–positive OPSCC has also been shown to have distinct host gene expression profiles compared with HPV-negative OPSCC. Recently, this distinction has been shown to include the epigenome. It is well supported that cancers are epigenetically deregulated. This review highlights epigenetic differences between HPV-positive and HPV-negative OPSCCs. The epigenetic mechanisms highlighted include methylation changes to host and viral DNA, and host chromatin modification. We also review the current evidence regarding host DNA methylation changes associated with smoking, and deregulation of microRNA expression in HPV-positive OPSCC. Objective To provide an overview of epigenetic mechanisms reported in HPV-positive OPSCC, with analogies to cervical cancer, and discussion of the challenges involved in studying epigenetic changes in HPV-associated OPSCC in combination with changes associated with smoking. Data Sources Sources were a literature review of peer-reviewed articles in PubMed on HPV and either OPSCC or head and neck squamous cell carcinoma, and related epigenetic mechanisms. Conclusions Epigenetic changes are reported to be a contributing factor to maintaining a malignant phenotype in HPV-positive OPSCC. The epigenetic mechanisms highlighted in this review can be studied for potential as biomarkers or as drug targets. Furthermore, continued research on the deregulation of epigenetic mechanisms in HPV-positive OPSCC (compared with HPV-negative OPSCC) may contribute to our understanding of the clinical and biologic differences between HPV-positive and HPV-negative OPSCC.


2005 ◽  
Vol 168 (7) ◽  
pp. 1065-1076 ◽  
Author(s):  
Alka Mansukhani ◽  
Davide Ambrosetti ◽  
Greg Holmes ◽  
Lizbeth Cornivelli ◽  
Claudio Basilico

Activating mutations in fibroblast growth factor receptor 2 (FGFR2) cause several craniosynostosis syndromes by affecting the proliferation and differentiation of osteoblasts, which form the calvarial bones. Osteoblasts respond to FGF with increased proliferation and inhibition of differentiation. We analyzed the gene expression profiles of osteoblasts expressing FGFR2 activating mutations (C342Y or S252W) and found a striking down-regulation of the expression of many Wnt target genes and a concomitant induction of the transcription factor Sox2. Most of these changes could be reproduced by treatment of osteoblasts with exogenous FGF. Wnt signals promote osteoblast function and regulate bone mass. Sox2 is expressed in calvarial osteoblasts in vivo and we show that constitutive expression of Sox2 inhibits osteoblast differentiation and causes down-regulation of the expression of numerous Wnt target genes. Sox2 associates with β-catenin in osteoblasts and can inhibit the activity of a Wnt responsive reporter plasmid through its COOH-terminal domain. Our results indicate that FGF signaling could control many aspects of osteoblast differentiation through induction of Sox2 and regulation of the Wnt–β-catenin pathway.


2021 ◽  
Vol 478 (23) ◽  
pp. 4071-4092
Author(s):  
Jialin Shang ◽  
Michael R. Smith ◽  
Ananya Anmangandla ◽  
Hening Lin

The COVID-19 pandemic reminds us that in spite of the scientific progress in the past century, there is a lack of general antiviral strategies. In analogy to broad-spectrum antibiotics as antibacterial agents, developing broad spectrum antiviral agents would buy us time for the development of vaccines and treatments for future viral infections. In addition to targeting viral factors, a possible strategy is to understand host immune defense mechanisms and develop methods to boost the antiviral immune response. Here we summarize the role of NAD+-consuming enzymes in the immune defense against viral infections, with the hope that a better understanding of this process could help to develop better antiviral therapeutics targeting these enzymes. These NAD+-consuming enzymes include PARPs, sirtuins, CD38, and SARM1. Among these, the antiviral function of PARPs is particularly important and will be a focus of this review. Interestingly, NAD+ biosynthetic enzymes are also implicated in immune responses. In addition, many viruses, including SARS-CoV-2 contain a macrodomain-containing protein (NSP3 in SARS-CoV-2), which serves to counteract the antiviral function of host PARPs. Therefore, NAD+ and NAD+-consuming enzymes play crucial roles in immune responses against viral infections and detailed mechanistic understandings in the future will likely facilitate the development of general antiviral strategies.


Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 840 ◽  
Author(s):  
Chae Won Kim ◽  
Hye Jee Yoo ◽  
Jang Hyun Park ◽  
Ji Eun Oh ◽  
Heung Kyu Lee

Influenza is an infectious respiratory illness caused by the influenza virus. Though vaccines against influenza exist, they have limited efficacy. To additionally develop effective treatments, there is a need to study the mechanisms of host defenses from influenza viral infections. To date, the mechanism by which interleukin (IL)-33 modulates the antiviral immune response post-influenza infection is unclear. In this study, we demonstrate that exogenous IL-33 enhanced antiviral protection against influenza virus infection. Exogenous IL-33 induced the recruitment of dendritic cells, increased the secretion of pro-inflammatory cytokine IL-12, and promoted cytotoxic T-cell responses in the local microenvironment. Thus, our findings suggest a role of exogenous IL-33 in the antiviral immune response against influenza infection.


2021 ◽  
pp. 1-10
Author(s):  
Soad Ghabeshi ◽  
Ali Najafi ◽  
Batol Zamani ◽  
Mozhdeh Soltani ◽  
Amanuel Godana Arero ◽  
...  

BACKGROUND: Considerable evidence supports that SLE could be related to apoptotic cells and EBV infection. OBJECTIVE: The aim of this study was to identify the transcriptional signature of EBV infection in SLE patients for survey of the molecular apoptosis signaling pathways. METHODS: The PBMCs gene expression profiles of healthy control and SLE patients were obtained from GEO. Functional annotation and signaling pathway enrichment were carried out using DAVID, KEGG. To validate bioinformatics analysis the changes in genes expression of some of obtained genes, Real time PCR was performed on PBMCs from 28 SLE patients and 18 controls. RESULTS: We found that mean viral load was 6013 ± 390.1 copy/μg DNA from PBMCs in all patients. QRT-PCR results showed that the expression of the DUSP1 and LAMP3 genes which had most changes in the logFC among 4 candidate genes, increased significantly in comparison with control. The consistent expression of LMP2 as viral latency gene involve in apoptosis signaling pathways was detected in SLE patients with EBV viral load and some controls. CONCLUSIONS: The study indicated that some cellular genes may have an important role in pathogenesis of SLE through apoptosis signaling pathways. Beside, EBV infection as an environmental risk factor for SLE may affect the dysfunction of apoptosis.


Sign in / Sign up

Export Citation Format

Share Document