scholarly journals Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shalil Khanal ◽  
Shanta R. Bhattarai ◽  
Jagannathan Sankar ◽  
Ramji K. Bhandari ◽  
Jeffrey M. Macdonald ◽  
...  

Abstract Nano-in-micro (NIM) system is a promising approach to enhance the performance of devices for a wide range of applications in disease treatment and tissue regeneration. In this study, polymeric nanofibre-integrated alginate (PNA) hydrogel microcapsules were designed using NIM technology. Various ratios of cryo-ground poly (lactide-co-glycolide) (PLGA) nanofibres (CPN) were incorporated into PNA hydrogel microcapsule. Electrostatic encapsulation method was used to incorporate living cells into the PNA microcapsules (~500 µm diameter). Human liver carcinoma cells, HepG2, were encapsulated into the microcapsules and their physio-chemical properties were studied. Morphology, stability, and chemical composition of the PNA microcapsules were analysed by light microscopy, fluorescent microscopy, scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The incorporation of CPN caused no significant changes in the morphology, size, and chemical structure of PNA microcapsules in cell culture media. Among four PNA microcapsule products (PNA-0, PNA-10, PNA-30, and PNA-50 with size 489 ± 31 µm, 480 ± 40 µm, 473 ± 51 µm and 464 ± 35 µm, respectively), PNA-10 showed overall suitability for HepG2 growth with high cellular metabolic activity, indicating that the 3D PNA-10 microcapsule could be suitable to maintain better vitality and liver-specific metabolic functions. Overall, this novel design of PNA microcapsule and the one-step method of cell encapsulation can be a versatile 3D NIM system for spontaneous generation of organoids with in vivo like tissue architectures, and the system can be useful for numerous biomedical applications, especially for liver tissue engineering, cell preservation, and drug toxicity study.

1999 ◽  
Vol 340 (1) ◽  
pp. 309-320 ◽  
Author(s):  
Sikha Bettina MUKHERJEE ◽  
S. ARAVINDA ◽  
B. GOPALAKRISHNAN ◽  
Sushma NAGPAL ◽  
Dinakar M. SALUNKE ◽  
...  

The seminiferous tubular fluid (STF) provides the microenvironment necessary for spermatogenesis in the adluminal compartment of the seminiferous tubule (ST), primarily through secretions of the Sertoli cell. Earlier studies from this laboratory demonstrated the presence of glutathione S-transferase (GST) in STF collected from adult rat testis and in the spent media of ST cultures. This study describes the cellular source, isoform composition and possible function of GSTs in the STF. The major GST isoforms present in STF in vivo share extensive N-terminal similarity with rat GSTM1 (rGSTM1), rGSTM2, rGSTM3 and rGST-Alpha. Molecular masses of rGSTM2, rGSTM3 and rGST-Alpha from liver and testis sources were similar, unlike STF-GSTM1, which was larger by 325 Da than its liver counterpart. Peptide digest analysis profiles on reverse-phase HPLC between liver and STF isoforms were identical, and N-terminal sequences of selected peptides obtained by digestion of the various isoforms were closely similar. The above results confirmed close structural similarity between liver and STF-GST isoforms. Active synthesis and secretion of GSTs by the STs were evident from recovery of radiolabelled GST from the spent media of ST cultures. Analysis of secreted GST isoforms showed that GST-Alpha was not secreted by the STs in vitro, whereas there was an induction of GST-Pi secretion. Detection of immunostainable GST-Mu in Sertoli cells in vitro and during different stages of the seminiferous epithelium in vivo, coupled with the recovery of radiolabelled GST from Sertoli cell-culture media, provided evidence for Sertoli cells as secretors of GST. In addition, STF of ‘Sertoli cell only’ animals showed no change in the profile of GST isoform secretion, thereby confirming Sertoli cells as prime GST secretors. Non-recovery of [35S]methionine-labelled GSTs from germ cell culture supernatants, but their presence in germ cell lysates, confirm the ability of the germ cells to synthesize, but not to release, GSTs. Functionally, STF-GSTM1 appeared to serve as a steroid-binding protein by its ability to bind to testosterone and oestradiol, two important hormones in the ST that are essential for spermatogenesis, with binding constants of < 9.8×10-7 M for testosterone and 9×10-6 M for oestradiol respectively.


Author(s):  
Deep Chhavi Anand ◽  
Rishikesh Meena ◽  
Vidya Patni

Objective: The aim of the present study was to develop a callus induction protocol and comparative study of therapeutic phytochemicals present in in vivo leaf and in vitro callus extracts through Gas Chromatography-Mass Spectrometry analysis.Methods: Murashige and Skoog media was used as culture media for callus induction. In vitro callus induction protocol was developed by studying the effects of various plant growth regulators like auxin, 2, 4-D (2,4-dichlorophenoxyacetic acid), NAA (naphthalic acetic acid), alone and in combination with cytokinin BAP (benzyl aminopurine), on leaf and stem explants. The GC-MS analysis of Ampelocissus latifolia was carried out on Shimadzu QP-2010 plus with thermal desorption system TD 20 to study the phytochemical profile.Results: In vitro callus induction protocol was developed for the plant and callusing was done from leaf and stem explants of Ampelocissus latifolia. The best result for callus induction was obtained using leaf explant, and callus production were maximum in Murashige and Skoog medium fortified with BAP (0.5 mg/l) and NAA (1.0 mg/l). Major compounds identified in the GC-MS analysis were Campesterol, Stigmasterol, Beta-Sitosterol, Docosanol, Dodecanoic acid, etc., in in vitro extract and Beta Sitosterol, Tocopherol, Squalene, Bergamot oil, Margarinic acid, Hexadecanoic acid, etc., in in vivo extract. The different active phytochemicals identified have been found to possess a wide range of biological activities, thus this analysis forms a basis for the biological characterization and importance of the compounds identified for human benefits.Conclusion: This is the first report on callus induction in Ampelocissus latifolia. From the results obtained through the in vitro callus induction and its comparative GCMS analysis with in vivo extract, it is revealed that Ampelocissus latifolia contains various bioactive compounds that are of importance for phytopharmaceutical uses. The GCMS analysis revealed that the amount of Beta-sitosterol and 5-Hydroxymethylfurfural (HMF) was very high in in vitro extract as compared to in vivo extract.


2019 ◽  
Vol 5 (1) ◽  
pp. eaau7314 ◽  
Author(s):  
Johan Vande Voorde ◽  
Tobias Ackermann ◽  
Nadja Pfetzer ◽  
David Sumpton ◽  
Gillian Mackay ◽  
...  

Currently available cell culture media may not reproduce the in vivo metabolic environment of tumors. To demonstrate this, we compared the effects of a new physiological medium, Plasmax, with commercial media. We prove that the disproportionate nutrient composition of commercial media imposes metabolic artifacts on cancer cells. Their supraphysiological concentrations of pyruvate stabilize hypoxia-inducible factor 1α in normoxia, thereby inducing a pseudohypoxic transcriptional program. In addition, their arginine concentrations reverse the urea cycle reaction catalyzed by argininosuccinate lyase, an effect not observed in vivo, and prevented by Plasmax in vitro. The capacity of cancer cells to form colonies in commercial media was impaired by lipid peroxidation and ferroptosis and was rescued by selenium present in Plasmax. Last, an untargeted metabolic comparison revealed that breast cancer spheroids grown in Plasmax approximate the metabolic profile of mammary tumors better. In conclusion, a physiological medium improves the metabolic fidelity and biological relevance of in vitro cancer models.


Author(s):  
Shal N

This review presents the recent advances and the current state-of-the-art of bioactive glass-based hybrid biomaterials for bone regeneration. Hybrid materials comprise two (or more) constituents at the nanometre scale, in which typically, one constituent is organic and functions as the matrix phase and the other constituent is inorganic and behaves as the filler phase. Such materials, thereby, more closely resemble natural bio-nanocomposites such as bone. Various glass compositions in combination with a wide range of natural and synthetic polymers have been evaluated in vivo under experimental conditions ranging from unloaded critical-sized defects to mechanically-loaded, weight-bearing sites with highly favourable outcomes. Additional possibilities include controlled release of anti-osteoporotic drugs, ions, antibiotics, pro-angiogenic substances and pro-osteogenic substances. Histological and morphological evaluations suggest the formation of new, highly vascularised bone that displays signs of remodelling over time. With the possibility to tailor the mechanical and chemical properties through careful selection of individual components, as well as the overall geometry (from mesoporous particles and micro-/nanospheres to 3D scaffolds and coatings) through innovative manufacturing processes, such biomaterials present exciting new avenues for bone repair and regeneration.


2015 ◽  
Vol 44 (17) ◽  
pp. 6287-6305 ◽  
Author(s):  
Thomas L. Moore ◽  
Laura Rodriguez-Lorenzo ◽  
Vera Hirsch ◽  
Sandor Balog ◽  
Dominic Urban ◽  
...  

This review discusses nanoparticle colloidal stability in biological media in an attempt to shed light on the difficulty correlating nanoparticle physico-chemical properties and biological fate.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1686
Author(s):  
Noorjahan Aibani ◽  
Raj Rai ◽  
Parth Patel ◽  
Grace Cuddihy ◽  
Ellen K. Wasan

The unique properties of chitosan make it a useful choice for various nanoparticulate drug delivery applications. Although chitosan is biocompatible and enables cellular uptake, its interactions at cellular and systemic levels need to be studied in more depth. This review focuses on the various physical and chemical properties of chitosan that affect its performance in biological systems. We aim to analyze recent research studying interactions of chitosan nanoparticles (NPs) upon their cellular uptake and their journey through the various compartments of the cell. The positive charge of chitosan enables it to efficiently attach to cells, increasing the probability of cellular uptake. Chitosan NPs are taken up by cells via different pathways and escape endosomal degradation due to the proton sponge effect. Furthermore, we have reviewed the interaction of chitosan NPs upon in vivo administration. Chitosan NPs are immediately surrounded by a serum protein corona in systemic circulation upon intravenous administration, and their biodistribution is mainly to the liver and spleen indicating RES uptake. However, the evasion of RES system as well as the targeting ability and bioavailability of chitosan NPs can be improved by utilizing specific routes of administration and covalent modifications of surface properties. Ongoing clinical trials of chitosan formulations for therapeutic applications are paving the way for the introduction of chitosan into the pharmaceutical market and for their toxicological evaluation. Chitosan provides specific biophysical properties for effective and tunable cellular uptake and systemic delivery for a wide range of applications.


2011 ◽  
pp. 419-437 ◽  
Author(s):  
M. PAŘÍZEK ◽  
K. NOVOTNÁ ◽  
L. BAČÁKOVÁ

This review summarizes recent trends in the construction of bioartificial vascular replacements, i.e. hybrid grafts containing synthetic polymeric scaffolds and cells. In these advanced replacements, vascular smooth muscle cells (VSMC) should be considered as a physiological component, although it is known that activation of the migration and proliferation of VSMC plays an important role in the onset and development of vascular diseases, and also in restenosis of currently used vascular grafts. Therefore, in novel bioartificial vascular grafts, VSMCs should be kept in quiescent mature contractile phenotype. This can be achieved by (1) appropriate physical and chemical properties of the material, such as its chemical composition, polarity, wettability, surface roughness and topography, electrical charge and conductivity, functionalization with biomolecules and mechanical properties, (2) appropriate cell culture conditions, such as composition of cell culture media and dynamic load, namely cyclic strain, and (3) the presence of a confluent, mature, semipermeable, non-thrombogenic and non-immunogenic endothelial cell (EC) barrier, covering the luminal surface of the graft and separating the VSMCs from the blood. Both VSMCs and ECs can also be differentiated from stem and progenitor cells of various sources. In the case of degradable scaffolds, the material will gradually be removed by the cells and will be replaced by their own new extracellular matrix. Thus, the material component in advanced blood vessel substitutes acts as a temporary scaffold that promotes regeneration of the damaged vascular tissue.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1113
Author(s):  
Árpád Turcsányi ◽  
Ditta Ungor ◽  
Edit Csapó

In medical research the visualization of drug carrier accumulation and release of the loaded drugs in vivo is an important field. In this work, two protein-stabilized gold nanoclusters (Au NCs) as effective fluorescent reporters (FRs) were investigated for labeling of biocompatible chitosan-modified hyaluronic acid based nanocarriers having two different structures. The colloid stability of the labeled carriers was studied by dynamic light scattering and Zeta potential measurements, while the changes in the fluorescence of the lysozyme- (LYZ) and bovine serum albumin (BSA)-stabilized Au NCs were analyzed by spectrofluorimetry and confocal fluorescent microscopy. We found that the labeling was effective with a wide range of marker:carrier mass ratios, and the fluorescence of the NCs and the colloid stability of the complexes were retained. Labeling during preparation and subsequent labeling were compared, and based on composition (nanocluster:carrier mass ratio) and structure of the complex systems we preferred the latter method, as it left the Au NCs free for further modifications. Considering both marker:carrier mass ratios and emission intensities, the LYZ-stabilized Au NCs proved to be better labels. The core-shell type carrier formulations showed increased fluorescence with LYZ-stabilized NCs, presumably from aggregation induced emission.


The Copley Medal is awarded to Sir Derek Barton, F. R. S. Among Sir Derek Barton's many distinguished contributions to organic chemistry, outstanding is his conception and development of conformational analysis, which represents the most important advance in this century in the understanding of the stereochemistry of organic compounds, and for which he received a Nobel Prize in 1969. Originally devised for cyclohexane derivatives, the concept was rapidly extended to other ring systems, and is of major importance in interpretation of the physical and chemical properties of a wide range of natural products. Sir Derek has also contributed greatly to the understanding of biosynthesis, and in many cases demonstrated the validity of his hypotheses by labelling experiments in vivo . In particular, his ideas on the nature of phenolic coupling, involving one-electron oxidative processes, formed the basis of a very large number of successful biosynthetic studies, especially in the alkaloid field. He has also applied his ideas to the simulation of natural biosynthetic sequences, the one-step synthesis of the complex usnic acid from a simple monocyclic precursor providing one of the most striking examples.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2483
Author(s):  
Anik Karan ◽  
Elnaz Khezerlou ◽  
Farnaz Rezaei ◽  
Leon Iasemidis ◽  
Mark A. DeCoster

Astrocytes, also known as astroglia, are important cells for the structural support of neurons as well as for biochemical balance in the central nervous system (CNS). In this study, the polymerization of dopamine (DA) to polydopamine (PDA) and its effect on astrocytes was investigated. The polymerization of DA, being directly proportional to the DA concentration, raises the prospect of detecting DA concentration from PDA optically using image-processing techniques. It was found here that DA, a naturally occurring neurotransmitter, significantly altered astrocyte cell number, morphology, and metabolism, compared to astrocytes in the absence of DA. Along with these effects on astrocytes, the polymerization of DA to PDA was tracked optically in the same cell culture wells. This polymerization process led to a unique methodology based on multivariate regression analysis that quantified the concentration of DA from optical images of astrocyte cell culture media. Therefore, this developed methodology, combined with conventional imaging equipment, could be used in place of high-end and expensive analytical chemistry instruments, such as spectrophotometry, mass spectrometry, and fluorescence techniques, for quantification of the concentration of DA after polymerization to PDA under in vitro and potentially in vivo conditions.


Sign in / Sign up

Export Citation Format

Share Document