scholarly journals Divergence in Transcriptional and Regulatory Responses to Mating in Male and Female Fruitflies

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emily K. Fowler ◽  
Thomas Bradley ◽  
Simon Moxon ◽  
Tracey Chapman

Abstract Mating induces extensive physiological, biochemical and behavioural changes in female animals of many taxa. In contrast, the overall phenotypic and transcriptomic consequences of mating for males, hence how they might differ from those of females, are poorly described. Post mating responses in each sex are rapidly initiated, predicting the existence of regulatory mechanisms in addition to transcriptional responses involving de novo gene expression. That post mating responses appear different for each sex also predicts that the genome-wide signatures of mating should show evidence of sex-specific specialisation. In this study, we used high resolution RNA sequencing to provide the first direct comparisons of the transcriptomic responses of male and female Drosophila to mating, and the first comparison of mating-responsive miRNAs in both sexes in any species. As predicted, the results revealed the existence of sex- and body part-specific mRNA and miRNA expression profiles. More genes were differentially expressed in the female head-thorax than the abdomen following mating, whereas the opposite was true in males. Indeed, the transcriptional profile of male head-thorax tissue was largely unaffected by mating, and no differentially expressed genes were detected at the most stringent significance threshold. A subset of ribosomal genes in females were differentially expressed in both body parts, but in opposite directions, consistent with the existence of body part-specific resource allocation switching. Novel, mating-responsive miRNAs in each sex were also identified, and a miRNA-mRNA interactions analysis revealed putative targets among mating-responsive genes. We show that the structure of genome-wide responses by each sex to mating is strongly divergent, and provide new insights into how shared genomes can achieve characteristic distinctiveness.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julián Medina ◽  
Lissa Cruz-Saavedra ◽  
Luz Helena Patiño ◽  
Marina Muñoz ◽  
Juan David Ramírez

Abstract Background Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). Methods We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). Results Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. Conclusion Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis. Graphical Abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samina Shabbir ◽  
Prerona Boruah ◽  
Lingli Xie ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mohsin Nawaz ◽  
...  

AbstractOvary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Boyin Jia ◽  
Yuan Liu ◽  
Qining Li ◽  
Jiali Zhang ◽  
Chenxia Ge ◽  
...  

Studies of the gene and miRNA expression profiles associated with the postnatal late growth, development, and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq) analyses to determine the differentially expressed (DE) unigenes and miRNAs from skeletal muscle tissues at 1, 3, 5, and 10 years in sika deer. A total of 51,716 unigenes, 171 known miRNAs, and 60 novel miRNAs were identified based on four mRNA and small RNA libraries. A total of 2,044 unigenes and 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 1,946 unigenes and 4 miRNAs were differentially expressed between adult and adolescent sika deer, and 2,209 unigenes and 1 miRNAs were differentially expressed between aged and adult sika deer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DE unigenes and miRNA were mainly related to energy and substance metabolism, processes that are closely associate with the growth, development, and aging of skeletal muscle. We also constructed mRNA–mRNA and miRNA–mRNA interaction networks related to the growth, development, and aging of skeletal muscle. The results show that mRNA (Myh1, Myh2, Myh7, ACTN3, etc.) and miRNAs (miR-133a, miR-133c, miR-192, miR-151-3p, etc.) may play important roles in muscle growth and development, and mRNA (WWP1, DEK, UCP3, FUS, etc.) and miRNAs (miR-17-5p, miR-378b, miR-199a-5p, miR-7, etc.) may have key roles in muscle aging. In this study, we determined the dynamic miRNA and unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent miRNAs and unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth, and maintenance and will also provide valuable information for sika deer genetic breeding.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 3572-3572
Author(s):  
V. Boige ◽  
M. Svrcek ◽  
S. Michiels ◽  
M. Pocard ◽  
V. Laville ◽  
...  

3572 Background: Despite substantial progress in molecular pathogenesis of colon cancer (CC), no reliable biomarkers of outcome have yet been identified in patients with resected stage II-III CC. Methods: We analyzed genome-wide mRNA expression profiles in 20 stage II or III left side CC from 10 patient who developed metastasis (M+) and 10 disease free patients followed up for at least 4 years (M-) using high-density oligonucleotide microarrays (Agilent technology). RNA from tumor tissue (T) was hybridized against normal tissue (NT) from the same patient and each experiment was replicated 4 times (with 2 dye-swaps). The goal was to select genes both differentially expressed between T and NT and between M+ and M-. A tissu-array was constructed using 212 stage II and III resected CRC (164 CC, 64 rectal cancers) and their matched NT. For survival analysis, immunohistochemistry (IHC) data was dichotomized at the median value. Results: Analysis of microarray data yielded 27 genes that had a 2-fold difference between the expression in T and NT in at least 5 out of 20 patients and for which the average expression was significantly different between M+ and M- (p<0.01, t-test). Among the 6 most differentially expressed genes between M+ and M- in T, 4 of them were found to be involved in interferon γ pathway and could be evaluated by IHC: CXCL9, CXCL13, PPARγ, THSD. In order to assess macrophage and natural killer (NK) cell infiltration, CD68 and CD57 were also analyzed. Intensity was measured by semi-quantitative scores for the first 4 genes and by the number of infiltrating cells for the others. CXCL9, PPARGγ, CXCL13, CD57 and CD68 were significantly underexpressed in T as compared to NT (p<0.0001, paired t-test). The logrank test stratified by cancer site indicated that high IHC expression of CD57 possessed a significantly better recurrence-free survival (RFS) than those low expression (p=0.004). Multivariate Cox analysis identified tumor site (p=0.001), node stage (p<0.001) and CD57 (p=0.002) as independent predictors of RFS. Conclusions: NK cell infiltration within colorectal cancers is associated with prolonged recurrence-free survival in stage II and III CRC. No significant financial relationships to disclose.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Juan Ma ◽  
Rongyan Wang ◽  
Xiuhua Li ◽  
Bo Gao ◽  
Shulong Chen

Abstract The sweet potato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), is an important pest of sweet potato worldwide. However, there is limited knowledge on the molecular mechanisms underlying growth and differentiation of C. formicarius. The transcriptomes of the eggs, second instar larvae, third instar larvae (L3), pupae, females, and males of C. formicarius were sequenced using Illumina sequencing technology for obtaining global insights into developing transcriptome characteristics and elucidating the relative functional genes. A total of 54,255,544 high-quality reads were produced, trimmed, and de novo assembled into 115,281 contigs. 61,686 unigenes were obtained, with an average length of 1,009 nt. Among these unigenes, 17,348 were annotated into 59 Gene Ontology (GO) terms and 12,660 were assigned to 25 Cluster of Orthologous Groups classes, whereas 24,796 unigenes were mapped to 258 pathways. Differentially expressed unigenes between various developmental stages of C. formicarius were detected. Higher numbers of differentially expressed genes (DEGs) were recorded in the eggs versus L3 and eggs versus male samples (2,141 and 2,058 unigenes, respectively) than the others. Genes preferentially expressed in each stage were also identified. GO and pathway-based enrichment analysis were used to further investigate the functions of the DEGs. In addition, the expression profiles of ten DEGs were validated by quantitative real-time PCR. The transcriptome profiles presented in this study and these DEGs detected by comparative analysis of different developed stages of C. formicarius will facilitate the understanding of the molecular mechanism of various living process and will contribute to further genome-wide research.


2020 ◽  
Author(s):  
Sotaro Takano ◽  
Hiromi Takahashi ◽  
Yoshie Yama ◽  
Ryo Miyazaki ◽  
Saburo Tsuru

ABSTRACTBackground“Non-growing” is a dominant life form of microorganisms in nature, where available nutrients and resources are extremely limited. However, the knowledge of the manner in which microorganisms resist nutrient deficiency is still rudimentary compared to those of the growing cells. In laboratory culture, Escherichia coli can survive for several years under starvation, denoted as long-term stationary phase (LSP), where a small fraction of the cells survive by recycling resources released from the starved nonviable cells and constitute a model system for understanding survival mechanisms under long-term starvation. Although the physiology by which viable cells in LSP adapt to long-term starvation is of great interest, their genome-wide response has not yet been fully understood.ResultsTo understand the physiological state of viable cells in the LSP environment, we analyzed the transcriptional profiles of cells exposed to the supernatant of LSP culture. We found that high expression of transporter genes and low expression of biosynthesis genes are the primary responses of the cells in the LSP supernatant compared to growing cells, which display similar responses to cells entering the stationary phase from the exponential growth phase. We also revealed some specific transcriptional responses in the LSP supernatant, such as higher expression of stress-response genes and lower expression of translation-related genes, compared to other non-growing conditions. This suggests that cells in LSP are highly efficient in terms of cellular survival and maintenance functions under starvation conditions. We also found population-density-dependent gene expression profiles in LSP, which are also informative to understand the survival mechanism of bacterial population.ConclusionOur current comprehensive analysis of the transcriptome of E. coli cells provides an overview of the genome-wide response to the long-term starvation environment. We detected both common and distinctive responses in the primary transcriptional changes between the short- and long-term stationary phase cultures, which could provide clues to understand the possible molecular mechanisms underlying survivability in the starved environment.


2017 ◽  
Author(s):  
Anish Dattani ◽  
Damian Kao ◽  
Yuliana Mihaylova ◽  
Prasad Abnave ◽  
Samantha Hughes ◽  
...  

AbstractPlanarian flatworms have an indefinite capacity to regenerate missing or damaged body parts owing to a population of pluripotent adult stems cells called neoblasts (NBs). Currently, little is known about the importance of the epigenetic status of NBs and how histone modifications regulate homeostasis and cellular differentiation. We have developed an improved and optimized ChIP-seq protocol for NBs in Schmidtea mediterranea and have generated genome-wide profiles for the active marks H3K4me3 and H3K36me3, and suppressive marks H3K4me1 and H3K27me3. The genome-wide profiles of these marks were found to correlate well with NB gene expression profiles. We found that genes with little transcriptional activity in the NB compartment but which switch on in post-mitotic progeny during differentiation are bivalent, being marked by both H3K4me3 and H3K27me3 at promoter regions. In further support of this hypothesis bivalent genes also have a high level of paused RNA Polymerase II at the promoter-proximal region. Overall, this study confirms that epigenetic control is important for the maintenance of a NB transcriptional program and makes a case for bivalent promoters as a conserved feature of animal stem cells and not a vertebrate specific innovation. By establishing a robust ChIP-seq protocol and analysis methodology, we further promote planarians as a promising model system to investigate histone modification mediated regulation of stem cell function and differentiation.


2020 ◽  
Author(s):  
Dongbo Shi ◽  
Virginie Jouannet ◽  
Javier Agustí ◽  
Verena Kaul ◽  
Victor Levitsky ◽  
...  

AbstractGenome-wide gene expression maps with a high spatial resolution have substantially accelerated molecular plant science. However, the number of characterized tissues and growth stages is still small because of the limited accessibility of most tissues for protoplast isolation. Here, we provide gene expression profiles of the mature inflorescence stem of Arabidopsis thaliana covering a comprehensive set of distinct tissues. By combining fluorescence-activated nucleus sorting and laser-capture microdissection with next generation RNA sequencing, we characterize transcriptomes of xylem vessels, fibers, the proximal and the distal cambium, phloem, phloem cap, pith, starch sheath, and epidermis cells. Our analyses classify more than 15,000 genes as being differentially expressed among different stem tissues and reveal known and novel tissue-specific cellular signatures. By determining transcription factor binding regions enriched in promoter regions of differentially expressed genes, we furthermore provide candidates for tissue-specific transcriptional regulators. Our datasets predict expression profiles of an exceptional amount of genes and allow generating hypotheses toward the spatial organization of physiological processes. Moreover, we demonstrate that information on gene expression in a broad range of mature plant tissues can be established with high spatial resolution by nuclear mRNA profiling.One sentence summaryA genome-wide high-resolution gene expression map of the Arabidopsis inflorescence stem is established.


2002 ◽  
Vol 70 (12) ◽  
pp. 6871-6879 ◽  
Author(s):  
John D. Boyce ◽  
Ian Wilkie ◽  
Marina Harper ◽  
Mike L. Paustian ◽  
Vivek Kapur ◽  
...  

ABSTRACT Little is known about the genomic-scale transcriptional responses of bacteria during natural infections. We used whole-genome microarray analysis to assess the transcriptional state of the gram-negative pathogen Pasteurella multocida, the causative agent of fowl cholera, during infection in the natural chicken host. We compared the expression profiles of bacteria harvested from the blood of septicemic chickens experiencing late-stage fowl cholera with those from bacteria grown in rich medium. Independent analysis of bacterial expression profiles from the infection of three individual chickens indicated that 40 genes were differentially expressed in all three individuals, 126 were differentially expressed in two of the three individuals, and another 372 were differentially expressed in one individual. Real-time reverse transcription-PCR assays were used to confirm the expression ratios for a number of genes. Of the 40 genes differentially expressed in all three individuals, 17 were up-regulated and 23 were down-regulated in the host compared with those grown in rich medium. The majority (10 of 17) of the up-regulated genes were involved in amino acid transport and metabolism and energy production and conversion, clearly indicating how P. multocida alters its biosynthetic and energy production pathways to cope with the host environment. In contrast, the majority (15 of 23) of down-regulated genes were of unknown or poorly characterized functions. There were clear differences in gene expression between the bacteria isolated from each of the three chickens, a finding consistent with individual host variation being an important factor in determining pathogen gene expression. Interestingly, bacteria from only two of the three infected animals had a gene expression profile highly similar to that observed during growth under iron-limiting conditions, suggesting that severe iron starvation may not always occur during P. multocida infection.


Sign in / Sign up

Export Citation Format

Share Document