scholarly journals Screen Printed Passives and Interconnects on Bio-Degradable Medical Hydrocolloid Dressing for Wearable Sensors

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Haneen Alsuradi ◽  
Jerald Yoo

AbstractThe healthcare system is undergoing a noticeable transformation from a reactive, post-disease treatment to a preventive, predictive continuous healthcare. The key enabler for such a system is a pervasive wearable platform. Several technologies have been suggested and implemented as a wearable platform, but these technologies either lack reliability, manufacturing practicability or pervasiveness. We propose a screen-printed circuit board on bio-degradable hydrocolloid dressings, which are medically used and approved, as a platform for wearable biomedical sensors to overcome the aforementioned problems. We experimentally characterize and prepare the surface of the hydrocolloid and demonstrate high-quality screen-printed passive elements and interconnects on its surface using conductive silver paste. We also propose appropriate models of the thick-film screen-printed passives, validated through measurements and FEM simulations. We further elucidate on the usage of the hydrocolloid dressing by prototyping a Wireless Power Transfer (WPT) sensor and a humidity sensor using printed spiral inductors and interdigital capacitors, respectively.

2011 ◽  
Vol 383-390 ◽  
pp. 5984-5989
Author(s):  
Yan Ping Yao ◽  
Hong Yan Zhang ◽  
Zheng Geng

In this paper, we present theoretical analysis and detailed design of a class of wireless power transfer (WPT) systems based on strong coupled magnetic resonances. We established the strong coupled resonance conditions for practically implementable WPT systems. We investigated the effects of non-ideal conditions presented in most practical systems on power transfer efficiency and proposed solutions to deal with these problems. We carried out a design of WPT system by using PCB (Printed Circuit Board) antenna pair, which showed strong coupled magnetic resonances. The innovations of our design include: (1) a new coil winding pattern for resonant coils that achieves a compact space volume, (2) fabrication of resonant coils on PCBs, and (3) integration of the entire system on a pair of PCBs. Extensive experiments were performed and experimental results showed that our WPT system setup achieved a guaranteed power transfer efficiency 14% over a distance of two times characteristic length(44cm). The wireless power transfer efficiency in this PCB based experimental system was sufficiently high to lighten up a LED with a signal generator.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1348
Author(s):  
Yingqin Zeng ◽  
Conghui Lu ◽  
Cancan Rong ◽  
Xiong Tao ◽  
Xiaobo Liu ◽  
...  

In a wireless power transfer (WPT) system, the power transfer efficiency (PTE) decreases sharply with the increase in transfer distance. Metamaterials (MMs) have shown great potential to enhance PTE in mid-range WPT systems. In this paper, we propose two MM slabs of a 3 × 3 array to enhance the magnetic coupling. The MM unit cell was designed by using square spiral patterns on a thin printed circuit board (PCB). Moreover, the asymmetric four-coil WPT system was designed and built based on the practical application scenario of wireless charging for unmanned devices. The simulation and experimental results show that two MM slabs can enhance power transmission capability better than one MM slab. By optimizing the position and spacing of two MM slabs, the PTE was significantly improved at a mid-range distance. The measured PTEs of a system with two MM slabs can reach 72.05%, 64.33% and 49.63% at transfer distances of 80, 100 and 120 cm. When the transfer distance is 100 cm, the PTE of a system with MMs is 33.83% higher than that without MMs. Furthermore, the receiving and load coils were integrated, and the effect of coil offset on PTE was studied.


2014 ◽  
Vol 931-932 ◽  
pp. 893-898
Author(s):  
Natthaphon Phokhaphan ◽  
Krit Choeisai

This paper proposes a wireless power transmission system which used a printed circuit board operating as an antenna for both transmitter and receiver. The proposed antenna is driven by a high frequency full-bridge inverter which operates at self-resonant frequency of the antenna. Design procedure for the proposed antenna is also described. Results obtained from experimental test-rig confirm that the fabricated antenna provides self-resonant frequency at 2 MHz as design. The efficiency of the antenna can achieve the highest when the distance between transmitter and receiver is 40 mm in vertical alignment. The maximum total efficiency of proposed system is approximately 56.7 % at the distance between transmitter and receiver of 80 mm.


2020 ◽  
Vol 10 (18) ◽  
pp. 6154
Author(s):  
AlaaDdin Al-Shidaifat ◽  
Sandeep Kumar ◽  
Shubhro Chakrabartty ◽  
Hanjung Song

In this paper, a conceptual investigation of the interface between wireless power devices and a retina complementary metal oxide semiconductor (CMOS) neuron integrated circuit (IC) have been presented. The proposed investigation consists of three designs: design-I, design-II, and design-III. Design-I involves a slotted loop monopole antenna as per American National Standards Institute (ANSI) guidelines, which achieve an ultra-wide band ranging from 3.1 GHz to 10.6 GHz. The biocompatible antenna is made on silicon-nitride substrate using on-wafer packaging technology and it is used as a receiver device. The performance of antenna provides a wideband, sufficient power to receive, and low losses due to the avoidance of printed circuit board (PCB) fabrication. A CMOS based multi-stack power harvesting circuit achieves the output power ranging from 4 mW to 2.7 W and corresponds from the selected Radio Frequency (RF) bands of loop antenna is exhibited in design-II. The power efficiency of 40% to 82%, with respect to output powers of 4 mW to 2.7 W, is achieved. Design-III includes a CMOS based retina neuron circuit that employs a dynamic feedback technique and support to achieve the number of read-out spikes. At the end of the interface between wireless power devices and a CMOS retina neuron IC, 50 mV read-out spikes are achieved, with varying light intensity, from 0 mW/cm2 to 2 mW/cm2. The proposed design-II and design-III are implemented and fabricated using commercial CMOS 0.065 µm, Samsung process. The antenna and RF power harvesting IC could be placed on a contact lens platform while retina neuron IC can be implanted after ganglions cells inside the eye. The antenna and harvesting IC are physically connected to the retina circuit in the form of light. This conceptual investigation could support medical professionals in achieving an interfacing approach to restore the image visualization.


2015 ◽  
Vol 2 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Guillaume Vigneau ◽  
Mohamed Cheikh ◽  
Rachid Benbouhout ◽  
Alexandru Takacs

This article presents a modeling and parametric investigation of printed circuit board (PCB) coils used in inductive power charging systems by using intensive full-wave electromagnetic simulations. Low frequencies applications (below 1 MHz) are targeted. The proposed modeling approach and design methodology are validated for wireless power transfer systems including transmitting (Tx) and receiving (Rx) coils. The impact of ferrite materials used for shielding and efficiency improvement is also analyzed. Optimized PCB coils allowing a theoretical efficiency of 88.7% at 100 kHz and 98.5% at 1 MHz confirms that PCB coils are appropriate for wireless power transfer at such frequencies.


Sign in / Sign up

Export Citation Format

Share Document