scholarly journals Publisher Correction: Characterization of three TRAPPC11 variants suggests a critical role for the extreme carboxy terminus of the protein

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Miroslav P. Milev ◽  
Daniela Stanga ◽  
Anne Schänzer ◽  
Andrés Nascimento ◽  
Djenann Saint-Dic ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Miroslav P. Milev ◽  
Daniela Stanga ◽  
Anne Schänzer ◽  
Andrés Nascimento ◽  
Djenann Saint-Dic ◽  
...  

AbstractTRAPPC11 was identified as a component of the TRAPP III complex that functions in membrane trafficking and autophagy. Variants in TRAPPC11 have been reported to be associated with a broad spectrum of phenotypes but all affected individuals display muscular pathology. Identifying additional variants will further our understanding of the clinical spectrum of phenotypes and will reveal regions of the protein critical for its functions. Here we report three individuals from unrelated families that have bi-allellic TRAPPC11 variants. Subject 1 harbors a compound heterozygous variant (c.1287 + 5G > A and c.3379_3380insT). The former variant results in a partial deletion of the foie gras domain (p.Ala372_Ser429del), while the latter variant results in a frame-shift and extension at the carboxy terminus (p.Asp1127Valfs*47). Subjects 2 and 3 both harbour a homozygous missense variant (c.2938G > A; p.Gly980Arg). Fibroblasts from all three subjects displayed membrane trafficking defects manifested as delayed endoplasmic reticulum (ER)-to-Golgi transport and/or a delay in protein exit from the Golgi. All three individuals also show a defect in glycosylation of an ER-resident glycoprotein. However, only the compound heterozygous subject displayed an autophagic flux defect. Collectively, our characterization of these individuals with bi-allelic TRAPPC11 variants highlights the functional importance of the carboxy-terminal portion of the protein.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 382
Author(s):  
Camelia-Maria Toma ◽  
Silvia Imre ◽  
Camil-Eugen Vari ◽  
Daniela-Lucia Muntean ◽  
Amelia Tero-Vescan

Plasma protein binding plays a critical role in drug therapy, being a key part in the characterization of any compound. Among other methods, this process is largely studied by ultrafiltration based on its advantages. However, the method also has some limitations that could negatively influence the experimental results. The aim of this study was to underline key aspects regarding the limitations of the ultrafiltration method, and the potential ways to overcome them. The main limitations are given by the non-specific binding of the substances, the effect of the volume ratio obtained, and the need of a rigorous control of the experimental conditions, especially pH and temperature. This review presents a variety of methods that can hypothetically reduce the limitations, and concludes that ultrafiltration remains a reliable method for the study of protein binding. However, the methodology of the study should be carefully chosen.


2021 ◽  
Vol 22 (4) ◽  
pp. 1800
Author(s):  
Kun-Hua Yu ◽  
Mei-Yu Huang ◽  
Yi-Ru Lee ◽  
Yu-Kie Lin ◽  
Hau-Ren Chen ◽  
...  

Misfolding of prion protein (PrP) into amyloid aggregates is the central feature of prion diseases. PrP has an amyloidogenic C-terminal domain with three α-helices and a flexible tail in the N-terminal domain in which multiple octapeptide repeats are present in most mammals. The role of the octapeptides in prion diseases has previously been underestimated because the octapeptides are not located in the amyloidogenic domain. Correlation between the number of octapeptide repeats and age of onset suggests the critical role of octapeptide repeats in prion diseases. In this study, we have investigated four PrP variants without any octapeptides and with 1, 5 and 8 octapeptide repeats. From the comparison of the protein structure and the thermal stability of these proteins, as well as the characterization of amyloids converted from these PrP variants, we found that octapeptide repeats affect both folding and misfolding of PrP creating amyloid fibrils with distinct structures. Deletion of octapeptides forms fewer twisted fibrils and weakens the cytotoxicity. Insertion of octapeptides enhances the formation of typical silk-like fibrils but it does not increase the cytotoxicity. There might be some threshold effect and increasing the number of peptides beyond a certain limit has no further effect on the cell viability, though the reasons are unclear at this stage. Overall, the results of this study elucidate the molecular mechanism of octapeptides at the onset of prion diseases.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Scott E Street ◽  
John T Melchior ◽  
Amy S Shah ◽  
W. S Davidson

High-density lipoproteins (HDL) play a critical role in lipid transport and vascular lipid homeostasis. HDL is heterogeneous, with particles varying in size, composition, and functionality. Proteomic studies have shown that HDL can host as many as 94 different proteins which can segregate into distinct subclasses. The two major apolipoproteins (apo)A-I and apoA-II account for 70% and 15-20%, respectively of HDL total protein. We hypothesized that the presence or absence of apoA-II can affect the binding of other proteins thus influencing HDL function. Immunoaffinity chromatography was used to isolate particles containing both apoA-I and apoA-II (LpA-I/LpA-II) and those with apoA-I with no apoA-II (LpA-I). These were isolated from both i ) total HDL isolated by ultracentrifugation (UC) and ii ) directly from plasma. The proteomic fingerprint of each population was determined by mass spectrometry. Within both populations, 54 total proteins were identified in UC isolated HDL compared to 98 proteins in particles isolated directly from plasma. In the UC isolated HDL, LpA-I/A-II particles contained 39 proteins compared to LpA-I particles which contained about 30. Interestingly, the opposite was true in particles isolated from plasma where upwards of 77 proteins on LpA-I/A-II particles were identified compared to LpA-I particles where 98 proteins were identified. Limited tryptic digestion experiments showed that LpA-I/A-II were more prone to proteolysis compared to LpA-I. Additionally, we found that LpA-I/A-II exhibited an increased capacity to efflux cholesterol from cultured macrophages (normalized by phospholipid content) suggesting a protein mediated difference in HDL functionality. Taken together, these results suggest the proteomic fingerprint of HDL subpopulations is heavily influenced by the method of isolation and that the proteomic pattern on HDL influences the physiological function of the particle.


Archaea ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Yanli Zhang ◽  
Linley R. Schofield ◽  
Carrie Sang ◽  
Debjit Dey ◽  
Ron S. Ronimus

(R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC fromMethanobrevibacter milleraeSM9 was cloned and expressed inEscherichia coliand biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen forα-ketoglutarate. Optimal activity was observed at pH 6.5. The apparentKMfor coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate theVmaxwas 93.9 μmol min−1 mg−1andkcatwas 62.8 s−1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.


2010 ◽  
Vol 135 (2) ◽  
pp. 115-134 ◽  
Author(s):  
Susan Meier ◽  
Neslihan N. Tavraz ◽  
Katharina L. Dürr ◽  
Thomas Friedrich

The Na+/K+-ATPase mediates electrogenic transport by exporting three Na+ ions in exchange for two K+ ions across the cell membrane per adenosine triphosphate molecule. The location of two Rb+ ions in the crystal structures of the Na+/K+-ATPase has defined two “common” cation binding sites, I and II, which accommodate Na+ or K+ ions during transport. The configuration of site III is still unknown, but the crystal structure has suggested a critical role of the carboxy-terminal KETYY motif for the formation of this “unique” Na+ binding site. Our two-electrode voltage clamp experiments on Xenopus oocytes show that deletion of two tyrosines at the carboxy terminus of the human Na+/K+-ATPase α2 subunit decreases the affinity for extracellular and intracellular Na+, in agreement with previous biochemical studies. Apparently, the ΔYY deletion changes Na+ affinity at site III but leaves the common sites unaffected, whereas the more extensive ΔKETYY deletion affects the unique site and the common sites as well. In the absence of extracellular K+, the ΔYY construct mediated ouabain-sensitive, hyperpolarization-activated inward currents, which were Na+ dependent and increased with acidification. Furthermore, the voltage dependence of rate constants from transient currents under Na+/Na+ exchange conditions was reversed, and the amounts of charge transported upon voltage pulses from a certain holding potential to hyperpolarizing potentials and back were unequal. These findings are incompatible with a reversible and exclusively extracellular Na+ release/binding mechanism. In analogy to the mechanism proposed for the H+ leak currents of the wild-type Na+/K+-ATPase, we suggest that the ΔYY deletion lowers the energy barrier for the intracellular Na+ occlusion reaction, thus destabilizing the Na+-occluded state and enabling inward leak currents. The leakage currents are prevented by aromatic amino acids at the carboxy terminus. Thus, the carboxy terminus of the Na+/K+-ATPase α subunit represents a structural and functional relay between Na+ binding site III and the intracellular cation occlusion gate.


2019 ◽  
Vol 11 (18) ◽  
pp. 5072 ◽  
Author(s):  
Vivek Pandey ◽  
Natalia Vidal ◽  
Rajat Panwar ◽  
Lubna Nafees

The global food industry has a critical role to play in achieving multiple Sustainable Development Goals (SDGs). Accordingly, global firms in this industry pursue a wide array of sustainability issues. However, it remains unclear as to how leading firms differ from laggard firms in the industry in terms of their overall approach to sustainability and SDGs. To bridge this gap, we conducted in-depth interviews with sixteen experts comprising representatives of global firms, non-government organizations (NGOs), and researchers and academics. First, we identified five sustainability performance criteria—engagement with multi-stakeholder groups (MSGs), measurement of sustainability outcomes, resource commitment by top management, integration of sustainability programs with traditional management systems, and a robust process for the identification of specific sustainability issues or SDGs. Then, we found that leaders and laggards are markedly different in their approaches to pursue these performance criteria.


2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Luke D. Bussiere ◽  
Promisree Choudhury ◽  
Bryan Bellaire ◽  
Cathy L. Miller

ABSTRACT Within infected host cells, mammalian orthoreovirus (MRV) forms viral factories (VFs), which are sites of viral transcription, translation, assembly, and replication. The MRV nonstructural protein μNS comprises the structural matrix of VFs and is involved in recruiting other viral proteins to VF structures. Previous attempts have been made to visualize VF dynamics in live cells, but due to current limitations in recovery of replicating reoviruses carrying large fluorescent protein tags, researchers have been unable to directly assess VF dynamics from virus-produced μNS. We set out to develop a method to overcome this obstacle by utilizing the 6-amino-acid (CCPGCC) tetracysteine (TC) tag and FlAsH-EDT2 reagent. The TC tag was introduced into eight sites throughout μNS, and the capacity of the TC-μNS fusion proteins to form virus factory-like (VFL) structures and colocalize with virus proteins was characterized. Insertion of the TC tag interfered with recombinant virus rescue in six of the eight mutants, likely as a result of loss of VF formation or important virus protein interactions. However, two recombinant (r)TC-μNS viruses were rescued and VF formation, colocalization with associating virus proteins, and characterization of virus replication were subsequently examined. Furthermore, the rTC-μNS viruses were utilized to infect cells and examine VF dynamics using live-cell microscopy. These experiments demonstrate active VF movement with fusion events as well as transient interactions between individual VFs and demonstrate the importance of microtubule stability for VF fusion during MRV infection. This work provides important groundwork for future in-depth studies of VF dynamics and host cell interactions. IMPORTANCE MRV has historically been used as a model to study the double-stranded RNA (dsRNA) Reoviridae family, the members of which infect and cause disease in humans, animals, and plants. During infection, MRV forms VFs that play a critical role in virus infection but remain to be fully characterized. To study VFs, researchers have focused on visualizing the nonstructural protein μNS, which forms the VF matrix. This work provides the first evidence of recovery of replicating reoviruses in which VFs can be labeled in live cells via introduction of a TC tag into the μNS open reading frame. Characterization of each recombinant reovirus sheds light on μNS interactions with viral proteins. Moreover, utilizing the TC-labeling FlAsH-EDT2 biarsenical reagent to visualize VFs, evidence is provided of dynamic VF movement and interactions at least partially dependent on intact microtubules.


2020 ◽  
Author(s):  
Chan Wang ◽  
Jiyuan Hu ◽  
Martin J. Blaser ◽  
Huilin Li

AbstractMotivationThe human microbiome is inherently dynamic and its dynamic nature plays a critical role in maintaining health and driving disease. With an increasing number of longitudinal microbiome studies, scientists are eager to learn the comprehensive characterization of microbial dynamics and their implications to the health and disease-related phenotypes. However, due to the challenging structure of longitudinal microbiome data, few analytic methods are available to characterize the microbial dynamics over time.ResultsWe propose a microbial trend analysis (MTA) framework for the high-dimensional and phylogenetically-based longitudinal microbiome data. In particular, MTA can perform three tasks: 1) capture the common microbial dynamic trends for a group of subjects on the community level and identify the dominant taxa; 2) examine whether or not the microbial overall dynamic trends are significantly different in groups; 3) classify an individual subject based on its longitudinal microbial profiling. Our extensive simulations demonstrate that the proposed MTA framework is robust and powerful in hypothesis testing, taxon identification, and subject classification. Our real data analyses further illustrate the utility of MTA through a longitudinal study in mice.ConclusionsThe proposed MTA framework is an attractive and effective tool in investigating dynamic microbial pattern from longitudinal microbiome studies.


Sign in / Sign up

Export Citation Format

Share Document